Roll No.

Total No. of Questions : 09

B.Tech.(Petroleum Refinary Engg.) (2013 Onwards)
 ENGINEERING MATHEMATICS - III
 Subject Code : BTAM-201
 Paper ID : [A3258]

(Sem.-3)

Max. Marks : 60
Time : 3 Hrs.

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Solve :
(a) Find Fourier series of $f(x)=x$ on the interval $[-\pi, \pi]$.
(b) Find inverse Laplace transform of $\frac{s+3}{(s-1)(s+2)}$.
(c) Find inverse Laplace transform of $\frac{e^{-3 s}}{(s+2)}$.
(d) Find Laplace transform of $t \int_{0} e^{-2 u} \cos 3 u d u$.
(e) Express $\mathrm{P}(x)=3 \mathrm{P}_{3}(x)+2 \mathrm{P}_{2}(x)+4 \mathrm{P}_{1}(x)+5 \mathrm{P}_{0}(x)$ as a polynomial in x, where $\mathrm{P}_{n}(x)$ is Legendre's polynomial of order n.
(f) For Legendre's polynomial $\mathrm{P}_{n}(x)$ of order n, show that $\mathrm{P}_{n}^{\prime}(1)=\frac{n(n+1)}{2}$.
(g) Eliminate arbitrary constants a and b from $z=a x+b y+a^{2} b^{2}$, to obtain the partial differential equation governing it.
(h) Form the general solution of Lagrange's equation $2 y z p+z x q=3 x y$.
(i) If $\lim _{z \rightarrow z_{0}} f(z)$ exists then show it is unique.
(j) Show that if $f(z)$ is analytic and $\operatorname{Re} f(z)$ is constant then show that $f(z)$ is also constant.

SECTION-B

2. Find a Fourier cosine and sine series of the function $f(x)=1$ over the interval $[0,2]$.
3. Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}-3 y=3, y(0)=4, y^{\prime}(0)=-7$.
4. Find two linearly independent solutions of the equation $2 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+1\right) y=0$ using the Frobenius method.
5. Find the solution of homogeneous partial differential equation

$$
\left[2 D^{2}+5 D D^{\prime}+3\left(D^{\prime}\right)^{2}+D+D^{\prime}\right] z=0
$$

6. Show that the function $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic. Find its conjugate harmonic function $v(x, y)$ and the corresponding analytic function $f(z)$.

SECTION-C

7. (i) Find the Laplace transform of the periodic function $f(t)=t$ over the interval $[0, a]$ and $f(t+a)=f(\mathrm{t})$.
(ii) Show that $\int_{-1}^{1} \mathrm{P}_{n}(x) \mathrm{P}_{m}(x) d x=0$ if $n \neq m$.
8. (i) Find the Power series solution about $x=0$ of the given differential equation

$$
\frac{d^{2} y}{d x^{2}}-4 y=0
$$

(ii) Using Method of Separation of Variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, given is

$$
u(x, 0)=6 e^{-3 x} .
$$

9.

(i) Evaluate $\oint_{\mathrm{C}} \frac{d z}{z\left(z^{2}+4\right)}, \mathrm{C}:|z|=1$.
(ii) Find all possible Taylor's and Laurent series expansions of the function

$$
f(z)=\frac{1}{(z+1)(z+2)^{2}} \quad \text { about the point } z=1 .
$$

