Roll No. \square
Total No. of Questions : 09

B.Tech (ME) (Sem.-4)
 MATHEMATIC-III
 Subject Code : AM-201
 Paper ID : [A0865]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) State Cauchy Integral theorem and Cauchy Residue theorem.
b) Define bilinear transformation and prove that it passes circles into circles.
c) Find the general solution of $4 \frac{\partial^{2} z}{\partial x^{2}}+12 \frac{\partial^{2} z}{\partial x \partial y}+9 \frac{\partial^{2} z}{\partial y^{2}}=0$.
d) Find the Laurent's series of $f(z)=\frac{1}{(z+1)(z+3)}$ for the region $1<|z|<3$.
e) Find the residue of $f(z)=\frac{z e^{i z}}{z^{2}+1}$ at each of its pole.
f) Form a partial differential equation from $z=f\left(\frac{y}{x}\right)$.
g) Write C-R equation in cartesian and polar form.
h) Is the function $u(x, y)=2 x y+3 x y^{2}-2 y^{3}$, a harmonic function?
i) Find the analytic function, whose imaginary part is $e^{x} \cos y$.
j) State the sufficient conditions for the existence of Laplace Transforamtion.

SECTION-B

2. Evaluate $\int_{0}^{\infty} \frac{\sin t}{t} d t$ using Laplace Transformation.
3. An elastic sting of length $L \mathrm{~cm}$ which is fastened at its end $x=0$ and $x=L$ is picked up at it center point $x=\mathrm{L} / 2$ to a height of $\mathrm{L} / 2$ and released from rest. Find the displacement of the string.
4. Solve $\left(\mathrm{D}^{2}+\mathrm{DD}^{\prime}-2 \mathrm{D}^{\prime 2}\right) \mathrm{z}=(y-1) x$.
5. Using Cauchy integral formula, evaluate $\oint \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, over a circle $|z|=3$.
6. Express $f(x)=x^{4}+2 x^{3}-6 x^{2}+5 x-3$ in terms of Legendre polynomials.

SECTION-C

7. (a) Evaluate $\oint \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z$, over a circle, $|z+i|=\sqrt{3}$.
(b) Using Laplace Transformation, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-2 y=3 \cos 3 t-11 \sin 3 \mathrm{t}$ with $y(0)=$ $0, y^{\prime}(0)=0$.
8. (a) Using Frobenius method, solve $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+6 y=0$, and about $x=0$.
(b) Find the solution of $\left(D_{x}^{2}+2 D_{x} D_{y}+D_{y}^{2}\right) z=e^{x-y}$.
9. Obtain Fourier series for function $f(x)$ given by $f(x)=\left\{\begin{array}{l}2+x,-2 \leq x \leq 0 \\ 2-x, 0 \leq x \leq 2\end{array}\right.$, where $f(x+4)=f(x)$.
