Roll No.

		,			

Total No. of Pages : 02
Total No. of Questions : 09
B.Tech.(Aerospace Engg.) (2012 Onwards)/B.Tech.(ANE) (Sem.-4)
NUMERICAL ANALYSIS
Subject Code : ANE-204
Paper ID : [A1029]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. a) Find the truncation error for e^{x} at $x=\frac{1}{5}$ if first three terms are retained in expansion.
b) The function $\mathrm{f}(\mathrm{x})=\tan ^{-1} x$ can be expanded as :
$\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \ldots \ldots .+(-1)^{n-1} \frac{x^{2 n-1}}{2 n+1}+\ldots \ldots \ldots$. find n such that series determines $\tan ^{-1}(1)$ correct to eight signifieant digits.
c) Show that bisection method has linear order of convergence.
d) Write Newton's Gregory forward interpolation formula.
e) Write Newton-Cotes Quadrature formula.
f) Define ill-conditioned system of equation with example.
g) Explain pivoting and types of Pivoting.
h) Write classification of linear partial differential equation.

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=G
$$

i) Write Newton's iterative formula for finding inverse of a number.
j) What is the difference between gauss -Seidal and gauss Jacobi's and which is fastest?

SECTION-B

2. Find the root of the equation $2 x=\cos x+3$ correct to three decimal places using (i) iteration method (ii) Aitkin's Δ^{2} method.
3. The function $y=f(x)$ is given at the points $(7,3),(8,1),(9,1)$ and $(10,9)$. Find the value of y for $x=9.5$ using Lagrange's interpolation formula.
4. Show that the LU decomposition method fails to solve the system of equations:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=2 \\
& 2 x_{1}+2 x_{2}+5 x_{3}=-3 \\
& 3 x_{1}+2 x_{2}-3 x_{3}=6
\end{aligned}
$$

whose exact solution is $(1,0,-1)$.
5. The velocity $\mathrm{v}(\mathrm{m} / \mathrm{sec})$ of a car, t seconds after it starts from rest ,is shown as follows:

$\mathrm{t}:$	0	12	24	36	48	60	72	84	96	108
$\mathrm{v}:$	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40
9.00										

Find the distance travelled by the car in 2 minutes.
6. Determine values of y at the pivotal points of the interval $(0,1)$ if y satisfies the boundary value problem $y^{i v}+81 y=81 x^{2}, y(0)=y(1)=y^{\prime \prime}(0)=y^{\prime \prime}(\mathrm{l})=0$ take $(\mathrm{n}=3)$.

SECTION-C

7. Using Milne's method, solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+y^{2}$ with $y(0)=0, y(0.2)=0.2027, y(0.4)=0.4228$, $y(0.6)=0.6841$, obtain $y(0.8), y(1)$ and $y(-0.2)$.
8. Find all the Eigen values and corresponding Eigen vectors of the matrix
$\left[\begin{array}{ccc}1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1\end{array}\right]$ by Jacobi's method.
9. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is $0 \leq x \leq 4,0 \leq y \leq 4$ given that $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(4, \mathrm{y})=8+2 \mathrm{y}, \mathrm{u}(x, 0)=\frac{x^{2}}{2}$, $\mathrm{u}(x, 4)=x^{2}$ Take $\mathrm{h}=\mathrm{k}=1$ and obtain the result correct to two decimal places.
