Roll No. \square Total No. of Pages: 02
Total No. of Questions : 18

B.Tech. (CSE/IT) (2012 Onwards) (Sem.-4)
 DISCRETE STRUCTURES
 Subject Code: BTCS 402
 Paper ID : [A2305]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1. Define an equivalence relation. Give an example.
2. If $\mathrm{A} \subset \mathrm{B}$ then show that $\mathrm{A}^{\mathrm{c}} \subset \mathrm{B}^{\mathrm{c}}$ where A and B are any two sets.
3. State the boundedness law of Boolean algebra.
4. When a ring is said to be without zero divisor?
5. Write the generating function corresponding to the numeric function,

$$
\mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}}+3^{\mathrm{n}}, \mathrm{n} \geq 0
$$

6. Give an example of a finite group.
7. Under what condition or conditions, a non empty subset H of a finite group G is its subgroup.
8. Find the chromatic number of the graph, $\mathrm{K}_{2,3}$.
9. Define a Hamiltonian cycle.
10. Define a graph. When it is said to be connected?

SECTION-B

11. Let $\mathrm{A}=(1,2,3,6\}$. Define a relation R on A as a $\mathrm{R} b$ iff a divides b . Show that R is a partial order.
12. Show that the intersection of two right ideals of a ring is again a right ideal of the ring.
13. Solve the recurrence relation, $a_{n}=2 a_{n-1}-a_{n-2}, n \geq 2$ with the initial conditions: $a_{0}=1, a_{1}=4$.
14. Prove that a group G each of whose elements other than identity is of order 2 is abelian.
15. Show that a connected graph G with $\mathrm{e}=\mathrm{v}-1$ is a tree.

SECTION-C

16. Let a, b be elements of a Boolean algebra then show that, $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
17. Let H be a subgroup of a group G then prove that the relation $R=\left\{(x, y): x, y \in G, x^{-1} y \in H\right\}$ is an equivalence relation.
18. Check if the following graphs are isomorphic or not.

