प|||l|l|l|l

Total No. of Pages : 02
Total No. of Questions : 09
B.Tech.(Petroleum Refinary Engineering) (2013 Batch) (Sem.-4)

CHEMICAL REACTION ENGINEERING-I
Subject Code : BTPC-406/BTCH-405
Paper ID : [72429]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. Answer briefly :
a. Define space-time and space velocity.
b. What is a recycle reactor? Recycle reactor issuitable for which kind of system?
c. Give expression for obtaining mean conversion, in a non-ideal reactor, using only RTD information.
d. What is half-life of a reaction?
e. Define yield and selectivity for a reaction?
f. Give mathematical expression for E curve for a single CSTR. Also, sketch this curve.
g. Differentiate between elementary and non-elementary reactions.
h. Under what conditions you would avoid using differential method of data analysis?
i. What is multiplicity of steady states?
j. Write material balance for reactant A in a semi-batch reactor, for the elementary liquid phase reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$.

SECTION-B

Q2 The pyrolysis of ethane proceeds with an activation energy of about $300 \mathrm{~kJ} / \mathrm{mol}$. How much faster is the decomposition at $650^{\circ} \mathrm{C}$ than at $500^{\circ} \mathrm{C}$?

Q3 Derive the expression for the concentrations of the species A, R, and S as a function of time for the series reaction: $A \rightarrow R \rightarrow S$

Q4 Aqueous A reacts to form $\mathrm{R}(\mathrm{A} \rightarrow \mathrm{R})$ and in the first minute in a batch reactor its concentration drops from $\mathrm{C}_{\mathrm{A} 0}=2.03 \mathrm{~mol} /$ liter to $\mathrm{C}_{\mathrm{Af}}=1.97 \mathrm{~mol} /$ liter. Find the rate equation for the reaction if the kinetics are second-order with respect to A .

Q5 Why optimum temperature progression in a non-isothermal reactor is desired? How optimum temperature progression can be approximated in a packed bed catalytic reactor.
Q. 6 Derive the performance equation for PFR.

SECTION-C

Q7 A homogeneous gas phase reaction A $\rightarrow 3 \mathrm{R}$ has a reported rate at $215^{\circ} \mathrm{C}$,
$-\mathrm{r}_{\mathrm{A}}=10^{-2} \mathrm{C}_{\mathrm{A}}^{1 / 2}, \quad[\mathrm{~mol} /$ liter $\cdot \mathrm{sec}]$
Find the space-time needed for 80% conversion of a 50% A- 50% inert feed to a plug flow reactor operating at $215^{\circ} \mathrm{C}$ and $5 \mathrm{~atm}\left(\mathrm{C}_{\mathrm{A} 0}=0.0625 \mathrm{~mol} /\right.$ liter $)$.

Q8 A reactor is to be used to run the following reaction, RTD data for this reactor is given below,
$A \rightarrow R$ with $\quad-r_{A}=0.05 \mathrm{C}_{\mathrm{A}} \mathrm{mol} /$ liter $\cdot \mathrm{min}$
$\left.\begin{array}{c|cccccccc}\begin{array}{c}\text { Time, min } \\ \text { Concentration } \\ \text { (arbitrary) }\end{array} & 1 & 3 & 0 & 5 & 70 & 10 & 10 & 10\end{array}\right) 0$
a. Calculate the mean and variance of the data.
b. Calculate X_{A} assuming plug flow
c. Calculate X_{A} assuming mixed flow.
d. Calculate X_{A} using RTD data.

Q9 Liquid reactant A decomposes as follows :

For 80% conversion of A, find the concentration of R in the product stream from a mixed flow reactor. Equal volumetric flow rates of the A and of B streams are fed to the reactor, and each stream has a concentration of $20 \mathrm{~mol} /$ liter of reactant.

