Roll No.						Total No. of Pages: 0	es: 03
						. Otal Holor Lagoo	-

Total No. of Questions: 09

B.Tech. (Marine Engg.) (2013 Onwards) (Sem.-4)

FLUID MECHANICS
Subject Code: BTME-403
Paper ID: [72436]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Define incompressible flow and incompressible fluid.
- b) What is specific gravity? How is it related to density?
- c) A vacuum gage connected to a chamber reads 24 kPa at a location where the atmospheric pressure is 92 kPa. Determine the absolute pressure in the chamber.
- d) Define static, dynamic, and hydrostatic pressure. Under what conditions is their sum constant for a flow stream?
- e) What is the hydraulic grade line? How does it differ from the energy grade line?
- f) What is the difference between a dimension and a unit? Give three examples of each.
- g) Which fluid at room temperature requires a larger pump to flow at a specified velocity in a given pipe: water or engine oil? Why?
- h) How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbulent flow?
- i) Define the Lagrangian description of fluid motion.
- j) Define streamline and discuss what streamlines indicate.

1 | M-72436 (S2)-2054

SECTION-B

- 2. A thin 20-cm by 20-cm flat plate is pulled at 1 m/s horizontally through a 3.6-mm-thick oil layer sandwiched between two plates, one stationary and the other moving at a constant velocity of 0.3 m/s, as shown in **Figure-1**. The dynamic viscosity of oil is 0.027 Pa.s. Assuming the velocity in each oil layer to vary linearly,
 - a) plot the velocity profile and find the location where the oil velocity is zero and
 - b) Determine the force that needs to be applied on the plate to maintain this motion.

Fig. 1

3. The gage pressure of the air in the tank shown in Figure-2 is measured to be 65 kPa. Determine the differential height h of the mercury column.

Fig. 2

- 4. A Pitot-static probe is used to measure the velocity of an aircraft flying at 3000 m. If the differential pressure reading is 3 kPa, determine the velocity of the aircraft.
- 5. Write the momentum equation for steady one-dimensional flow for the case of no external forces and explain the physical significance of its terms.

2 M-72436 (S2)-2054

www.FirstRanker.com

- 6. What is the physical significance of the Reynolds number? How is it defined for :
 - a) Flow in a circular pipe of inner diameter D and
 - b) Flow in a rectangular duct of cross section $a \times b$?

SECTION-C

- 7. Water at 10° C ($\rho = 999.7 \text{ kg/m}^3$ and $\mu = 1.307 \times 10^{-3} \text{ kg/m} \cdot \text{s}$) is flowing steadily in a 0.20- cm-diameter, 15-m-long pipe at an average velocity of 1.2 m/s. Determine :
 - a) The pressure drop.
 - b) The head loss.
 - c) The pumping power requirement to overcome this pressure drop.
- 8. Explain how flow rate is measured with obstruction type flow meters. Compare orifice meters, flow nozzles, and Venturi meters with respect to cost, size, head loss, and accuracy.
- 9. A flow nozzle equipped with a differential pressure gage is used to measure the flow rate of water at 10°C ($\rho = 999.7 \text{ kg/m}^3$ and $\mu = 1.307 \times 10^{-3} \text{ kg/m} \cdot \text{s}$) through a 3-cm-diameter horizontal pipe. The nozzle exit diameter is 1.5 cm, and the measured pressure drop is 3 kPa. Determine the volume flow rate of water, the average velocity through the pipe, and the head loss. (Figure-3)

Fig. 3

3 M-72436 (S2)-2054