

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech (AE) (Sem.-5)
NUMERICAL METHOD AND SIMULATION
IN ENGINEERING

Subject Code: AE-309 Paper ID: [A0717]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer the following:

- a) Define marginal probability distribution function of a bivariate random variable.
- b) How the Power method can be used to compute an eigenvalue of a matrix which is closest to a given number q.
- c) Find the condition number of the function $f(x) = \cos x$.
- d) Determine the Lagrange interpolating polynomial passing through the points (2,4) and (5,3).
- e) Write the relation between Arithmetic Mean (A.M.), Geometric Mean (G.M.) and Harmonic Mean (H.M.) of a given data.
- f) Consider the data: 2,3,9,16,9,3,9. Since 16 is the highest value in the observations, is it correct to say that it is the mode of the data? Give reason.
- g) What is the order of convergence when Newton Raphson's method is applied to the equation $x^2 6x + 9 = 0$ to find its multiple root.
- h) Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.01.
- i) Compute $\int_0^{\pi} x \sin x dx$ using Simpson's rule.
- j) Write the difference between Gauss Elimination and Gauss Seidel method.

SECTION-B

Q2 Use the Runge-Kutta method of order 4 ton approximate the solution of the following initial value problem.

$$y' = y - t^2 + 1$$
, $o \le t \le 2$, $y(0) = 0.5$.

Q3 Apply inverse Power method (perform 4 iterations) to find the smallest in magnitude eigen value of the following matrix:

$$\begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}$$

Q4 The following data is given

1.0	1.3	1.6	1.9	2.2
0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Use Stirling's formula to approximate f(1.5) with $x_0 = 1.6$.

- Q5 From a city population, the probability of selecting (i) a male or a smoker is 7/10, (ii) a male smoker is 2/5 and (iii) a male, if a smoker is already selected is 2/3. Find the probability of electing (a) a non-smoker, (b) a male, and (c) a smoker, if a male is already selected.
- Q6 Let $f(x) = (e^x e^{-x})/(x)$. Use three digit rounding arithmetic to evaluate f(0.1). The actual value is f(0.1) = 2.003335000, using this value find the relative error.

SECTION-C

- Q7 Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_0^{\pi} \sin x dx$ and employing.
 - a) Composite trapezoidal rule.
 - b) Composite Simpson's rule.
- Q8 The function $f(x) = \tan \pi x 6$ has a zero at $\pi \arctan 6 \approx 0.447431543$. Let $p_0 = 0$ and $p_1 = 0.48$. Use ten iterations of the secant method to approximate this root.
- Q9 A certain stimulus administered to each of the 12 patients resulted in the following increase in blood pressure:

Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure.

2 M-54043 (S2)-2579