\square

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer the following :
a) Is the sequence $x_{n+1}=0.5 x_{n}, n \geq 0, x_{0}=1$ a convergent sequence?
b) Write the forward finite difference formula for $\frac{d y}{d x}$.
c) Define the row rank of a matrix.
d) Define a singular matrix and also give one example.
e) Write the formula for Simpson's $1 / 3$ rule.
f) Can we use composite Simpson's rule with even number of node points?
g) Compute $\int_{0}^{2} e^{x} d x$ using Trapezoidal rule.
h) Use the forward-difference formula to approximate the derivative of $f(x)=\ln x$ at $x_{0}=1.8$ using $h=0.1$.
i) What is the order of convergence when Newton Raphson's method is applied to the equation $x^{2}-4 x+4=0$ to find its multiple root.
j) Explain complete pivoting.

SECTION-B

Q2 Apply Taylor's method of order 2 with $\mathrm{TV}=10$ to initial value problem

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

Q3 Use Newton's method to find a root of $x^{3}+4 x^{2}-10=0$ in the interval [1,2],
Q4 Approximate the integral $\int_{e}^{e+1} \frac{1}{x \ln x} d x$ using composite trapezoidal rule.

Q5 Find the order of convergence of Secant's method.
Q6 Solve the following system of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=2, \\
2 x_{1}+x_{2}=3, \\
-x_{1}+x_{2}+2 x_{3}=4 .
\end{array}
$$

SECTION-C

Q7 Use R-K method of order 4 to find out $y(1.2)$ with $h=0.1$ for the following initial value problem

$$
y \leqslant 1+y / t, \quad 1 \leq t \leq 2, \quad y(1)=2
$$

Q8 Derive Newton Raphson's formula for solving the equation $f(x)=0$ (specifying the assumptions made). Use the Newton Raphson method to solve the equation $x=\cos x$ starting with an initial guess $\frac{\pi}{4}$.

Q9 Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_{0}^{\pi} \sin x d x$ and employing
a) Composite trapezoidal rule.
b) Composite Simpson's rule.

