

www.FirstRanker.com

www.FirstRanker.com

|--|

Total No. of Pages :02

Total No. of Questions : 09

B.Tech.(ANE) (Sem.–5) AIRCRAFT PERFORMANCE Subject Code : ANE-315 Paper ID : [A1039]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

r.com

Q1 Define the following :

- a) 'Wing Loading' and 'Thrust Loading'.
- b) 'Range' and 'Endurance'.
- c) 'Aerodynamic Center' and 'Center of Pressure'.
- d) 'Geometric Altitude' and 'Absolute Altitude'.
- e) 'Troposphere' and 'Stratosphere'.
- f) 'Washin' and 'Washout'.
- g) 'Chord Line' and 'Camber Line'.
- h) 'Pressure Altitude' and 'Temperature Altitude'.
- i) 'Critical Mach Number' and 'Drag Divergence Mach number'.
- j) 'Zero-lift Drag' and 'Induced drag'.

www.FirstRanker.com

(5)

SECTION-B

- Q2 Calculate the standard atmospheric values of T, p and ρ at a geo-potential altitude of 20 km. Assume Lapse rate of -6.5 K/km in the gradient region. (1,2,2)
- Q3 Explain 'Delta Wing Aerodynamics' at Low Speed with the help of labeled illustration/plots. (5)
- Q4 Derive the expression for lift coefficient and drag coefficient for minimum drag condition.
- Q5 Define and explain various high lift devices. Show their effect on lift curve slopes. (5)
- Q6 Explain the nomenclature of '4-digit' and '6-digit' NACA series airfoils. (5)

SECTION-C

- Q7 Gulfstream-IV twin turbofan executive transport with weight of 200000N, planform area of 80 m² and drag polar as $C_D = 0.015 + 0.08C_L^2$ is flying at an altitude of 10 km ($\rho = 0.413 \text{ kg/m}^3$). Calculate :
 - a) $(C_L^{3/2}/C_D)_{max}$, $(C_L/C_D)_{max}$ and $(C_L^{1/2}/C_D)_{max}$ values. (5)
 - b) Velocities at which $(C_L^{3/2}/C_D)_{max}$, $(C_L/C_D)_{max}$ and $(C_L^{1/2}/C_D)_{max}$ occur. (5)
- Q8 Write notes on the following :
 - a) Drag and its categorization with explanation. (6)
 - b) V/STOL vehicles. (4)
- Q9 Calculate the total take-off distance at sea level of an aircraft weighing 200000N and also compare it with the value obtained from approximate relation with the help of following data (Use calculations at $V_{\infty} = 0.7V_{LO}$) : (Assume $C_L = 0.1$ during ground roll) (10)

$C_D = 0.014 + 0.07 C_L^2$	$k_1 = 0.02$	$K_{uc} = 4.5 \times 10^{-5}$	b = 20m
T = 65000N	h = 2.5m	$S = 90m^2$	$\mu_r = 0.035$
C _{Lmax} =1.5	N = 3	e = 0.9	h _{OB} =12m