Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09
B.Tech.(Automation \& Robotics) (2011 \& Onward) (Sem.-5) ELECTRONICS MEASUREMENT AND INSTRUMENTATION

Subject Code : BTEC-404
Paper ID : [A2056]
Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer briefly :
a. Compare Hay's Bridge and Maxwell's Bridge.
b. Write the working principle of a non planar display device.
c. For the lissajous pattern shown in Fig. 1 find out the frequency of vertical signal if frequency of horizontal signal is 3 KHz .

Figure-1
d. What will be the output on screen of CRO if a sinusoidal voltage is applied to vertical deflection plates but no voltage is applied to horizontal deflection plate?
e. Explain the terms: Dissipation Factor and Q factor.
f. What is the principle of harmonic distortion analyzer?
g. What controls the frequency of the displayed signal on CRO? Explain.
h. What are the various static and dynamic characteristics of instrumentation system?
i. What do you understand by LVDT? Explain.
j. Find the series equivalent inductance and resistance of the network that causes such a bridge to null with following bridge arms: $\omega=3 \mathrm{KHz}, \mathrm{R}$ and C in series of $2 \mathrm{~K} \Omega$ and $1 \mu \mathrm{~F}$ in one arm, two other opposite arms have $10 \mathrm{~K} \Omega$ in one and $1 \mathrm{~K} \Omega$ in other arm.

SECTION-B

Q2 With the help of Block diagram and suitable waveforms explain Integrating type digital voltmeters.

Q3 Explain the working and applications of Piezoelectric crystal.
Q4 Explain the principle and various components used for magnetic recorders.
Q5 How can the frequency be measured? Give its circuit and derive the relations.
Q6 What is telemetry? Explain any two applications.

SECTION-C

Q7 a) Give construction and working of PMMC instruments with torque equation.
b) A PMMC has a coil dimension of $17 \mathrm{~mm} * 13 \mathrm{~mm}$. the flux density in the sir gap is $1.9^{*} 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$ and spring constant is $0.17^{*} 10^{-6} \mathrm{Nm} / \mathrm{rad}$. Determine the number of turns required to produce an angular deflection of 90° when a current of 7 mA flows through the coil.

Q8 a) Explain the working of Schering bridge and derive an expression for measurement of unknown capacitance and its loss angle. Draw the phasor diagram under null conditions.
b) Determine the value of R_{1} and L_{1} of the inductor connected in Maxwell capacitance bridge circuit. One arm has C_{4} and R_{4} in parallel of $0.5 \mu \mathrm{~F}$ and $1 \mathrm{~K} \Omega$. Other two opposite arms have resistance of $\mathrm{R}_{2}=400 \Omega$ and $\mathrm{R} 3=600 \Omega$. Also find the Q factor of the coil if $\mathrm{f}=1 \mathrm{KHz}$.

Q9 a) Explain the block diagram of CRO in detail. Give the application of CRO for measurement of phase and frequency.
b) The x -deflecting plates in a CRT are 15 mm long and 16 mm apart. The centre of the plates is 20 cm from screen. If Ea is 2500 V . Find deflection sensitivity and deflection factor of CRT.

