www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 03

Total No. of Questions : 09

FirstRanker.com

B.Tech (Automation & Robotics) (2011 & Onwards) (Sem.-5)

NUMERICAL METHODS IN ENGINEERING

Subject Code : ME-309

Paper ID:[A2060]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

- 1. Write briefly :
 - a) The function $f(x) = \tan^{-1} x$ can be expressed as

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$$

Find *n* such that the series determine $\tan^{-1} x$ correct to eight significant digits at x = 1.

b) Show that $x_{n+1} = \frac{1}{2} x_n \left(3 - \frac{x_n^2}{\alpha} \right)$ has second order convergence near $\sqrt{\alpha}$.

- c) Using Newton Raphson method, find iterative formula to find $\sqrt[k]{N}$.
- d) Using Newton' divided difference formula, find the missing value from the table:

x	1	2	4	5	6
y	14	15	5	—	9

- e) Discuss Principle of least squares to fit a straight line to the given data.
- f) Derive Simpson's one-three rule from Newton's Cote quadrature formula.
- g) Let λ be an eigen value of the matrix A. Show that $\frac{1}{\lambda}$ is an eigen value of the inverse matrix A^{-1} .

1 | M -70482

FirstRanker.com

www.FirstRanker.com

h) Write Adam's predictor corrector formulas.

i) Use modified Euler's method to solve
$$\frac{dy}{dx} = x + |\sqrt{y}|, y(0) = 1, \text{ at } x = 0.2.$$

j) By Gauss 3-point formula, write the value of
$$\int_{-1}^{1} f(x) dx$$

SECTION-B

- 2. Using Regula Falsi method, find a real root of $3x + \sin x = e^x$, correct to there decimal places.
- 3. Fit a second degree parabola using Principle of least squares to the following data :

x	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

4. Employ Stirling's formula to compute $y_{12,2}$ from the following table :

	-	-			-
x	10	11	12 C	13	14
у	23967	28060	31788	35209	38368
-					

- 5. Evaluate $\int_{0.2}^{0.2} e^{-x^2} dx$ using the 3-point Gaussian quadrature formula.
- 6. Using Runge-Kutta method of 4th order to find y for x = 0.1, 0.2, 0.3 for $\frac{dy}{dx} = xy + y^2$, y(0) = 1. Continue the solution at x = 0.4 using Milne's predictor corrector method.

SECTION-C

- 7. a) Solve the system of non-linear equations $x^2 + y = 11$, $y^2 + x = 7$. Using Newton Raphson method, given $x_0 = 3.5$ and $y_0 = -1.8$.
 - b) The velocity 'v' (in meter/second) of a particle at a distance 's' (in meters) from a point on its linear path is given in the following data

www.FirstRanker.com

s:	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
v :	16	19	21	22	20	17	13	11	9

Estimate the time taken by the particle to traverse the distance of 20 meters, using Simpson's one-third rule.

8. a) From the table below, for what value of x, y is minimum? Also find this value of y

x	3	4	5	6	7	8
y	0.205	0.240	0.259	0.262	0.250	0.224

b) Using Jacobi's method, find all the eigen values and eigen vectors of the given matrix

matrix
$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}.$$

- 9. a) Solve the boundary value problem $y^{iv} + 81y = 729x^2$, y(0) = y'(0) = y''(1) = y'''(1) = 0, on taking n = 3.
 - b) Given the values of u(x, y) on the boundary of the square in the given figure, evaluate the function u(x, y) satisfying the Laplace equation $\nabla^2 u = 0$ at the pivotal points of this figure by Gauss Seidal's method.

