Roll No. \square Total No. of Pages : 03
Total No. of Questions : 09
B.Tech (Automation \& Robotics) (2011 \& Onwards) (Sem.-5)

NUMERICAL METHODS IN ENGINEERING
Subject Code: ME-309
Paper ID : [A2060]
Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

1. Write briefly :
a) The function $f(x)=\tan ^{-1} x$ can be expressed as

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots+(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}+\ldots
$$

Find n such that the series determine $\tan ^{-1} x$ correct to eight significant digits at $x=1$.
b) Show that $x_{n+1}=\frac{1}{2} x_{n}\left(3-\frac{x_{n}^{2}}{\alpha}\right)$ has second order convergence near $\sqrt{\alpha}$.
c) Using Newton Raphson method, find iterative formula to find $\sqrt[k]{\mathrm{N}}$.
d) Using Newton' divided difference formula, find the missing value from the table:

\boldsymbol{x}	1	2	4	5	6
\boldsymbol{y}	14	15	5	-	9

e) Discuss Principle of least squares to fit a straight line to the given data.
f) Derive Simpson's one-three rule from Newton's Cote quadrature formula.
g) Let λ be an eigen value of the matrix A. Show that $\frac{1}{\lambda}$ is an eigen value of the inverse matrix A^{-1}.
h) Write Adam's predictor corrector formulas.
i) Use modified Euler's method to solve $\frac{d y}{d x}=x+|\sqrt{y}|, y(0)=1$, at $x=0.2$.
j) By Gauss 3-point formula, write the value of $\int_{-1}^{1} f(x) d x$.

SECTION-B

2. Using Regula Falsi method, find a real root of $3 x+\sin x=e^{x}$, correct to there decimal places.
3. Fit a second degree parabola using Principle of least squares to the following data :

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	1	1.8	1.3	2.5	6.3

4. Employ Stirling's formula to compute $y_{12.2}$ from the following table :

\boldsymbol{x}	10	11	12	13	14
\boldsymbol{y}	23967	28060	31788	35209	38368

5. Evaluate $\int_{0.2}^{1.5} e^{-x^{2}} d x$ using the 3 point Gaussian quadrature formula.
6. Using Runge-Kutta method of $4^{\text {th }}$ order to find y for $x=0.1,0.2,0.3$ for $\frac{d y}{d x}=x y+y^{2}, y(0)=1$. Continue the solution at $x=0.4$ using Milne's predictor corrector method.

SECTION-C

7. a) Solve the system of non-linear equations $x^{2}+y=11, y^{2}+x=7$. Using Newton Raphson method, given $x_{0}=3.5$ and $y_{0}=-1.8$.
b) The velocity ' v ' (in meter/second) of a particle at a distance ' s ' (in meters) from a point on its linear path is given in the following data

$\mathbf{s : ~}$	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
$\mathbf{v}:$	16	19	21	22	20	17	13	11	9

Estimate the time taken by the particle to traverse the distance of 20 meters, using Simpson's one-third rule.
8. a) From the table below, for what value of x, y is minimum? Also find this value of y

\boldsymbol{x}	3	4	5	6	7	8
\boldsymbol{y}	0.205	0.240	0.259	0.262	0.250	0.224

b) Using Jacobi's method, find all the eigen values and eigen vectors of the given matrix

$$
\text { matrix }\left[\begin{array}{ccc}
1 & \sqrt{2} & 2 \\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}\right] \text {. }
$$

9. a) Solve the boundary value problem $y^{i v}+81 y=729 x^{2}, y(0)=y^{\prime}(0)=y^{\prime \prime}(1)=$ $y^{\prime \prime \prime}(\mathrm{l})=0$, on taking $n=3$.
b) Given the values of $u(x, y)$ on the boundary of the square in the given figure, evaluate the function $u(x, y)$ satisfying the Laplace equation $\nabla^{2} u=0$ at the pivotal points of this figure by Gauss Seidal's method.

