

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages
Total No. of Questions : 09	
B.Tech.(AE) (2011 Onwards)	(Sem.–5)
HEAT TRANSFER	
Subject Code : BTAE-5	503
Paper ID:[A2063]	

Time: 3 Hrs.

Max. Marks : 60

: 02

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :

- a. Discuss the mechanism of convection.
- b. What is the effect of temperature and pressure on thermal conductivity of solid?
- c. What is diffusivity?
- d. Write the general one dimension heat conduction equation in spherical coordinates.
- e. Explain Fourier's law of heat conduction.
- f. Explain the term thermal resistance.
- g. Draw the temperature profile curve for heat conducting cylindrical wall.
- h. What is lumped parameter analysis?
- i. Distinguish between fin efficiency and fin effectiveness.
- j. Write the equation for critical thickness of insulation for cylindrical wall.

www.FirstRanker.com

SECTION-B

- 2. Distinguish between heat transfer and thermodynamics.
- 3. Derive the general equation of one dimensional steady state heat conduction for a cylindrical wall.
- 4. Air at 20°C blows over hot plate of dimension 50×75 cm maintained at 250°C. The convection heat transfer coefficient is 25W/m². Calculate heat transfer. Assuming that the plate is made of carbon steel(1%) 2cm thick of thermal conductivity 43 W/m°C and the heat lost from the plate surface by radiation is 300 W, calculate the inside plate temperature.
- 5. What are fins? Explain the various types and their uses.
- 6. What is scope of heat transfer in IC engines?

SECTION-C

- 7. Derive the relationship for temperature distribution of a fin insulated at tip.
- 8. A man is found dead in a room at 16°C. The surface temperature on his waist is measured to be 23°C and heat transfer coefficient is estimated to be 9 W/m² °C. Modeling the body as 28 cm diameter, 1.8 m long cylinder, estimate how long it has been since he died. Take the properties of body to be k = 0.62 W/m°C and $\alpha = 0.15 \times 10^{-6}$ m²/s and assume initial temperature of the body to be 36°C.
- 9. A counter flow double-pipe heat exchanger is used to heat from 20 °C to 40 °C by cooling oil from 90 °C to 55 °C. The heat exchanger is designed for a total heat transfer of 59 KW with an overall heat transfer coefficient of 340 W/m²°C. Calculate surface area of heat exchanger.