Roll No. $\square$ Total No. of Pages : 02
Total No. of Questions: 09

$$
\begin{gathered}
\text { B.Tech.(ME) (2011 Onwards) (Sem.-5) } \\
\text { MATHEMATICS-III } \\
\text { Subject Code : BTAM-500 } \\
\text { Paper ID : [A2127] }
\end{gathered}
$$

Time: 3 Hrs.
Max. Marks : 60

## INSTRUCTION TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

## SECTION-A

1. Write briefly :
(a) Find the Fourier series of $f(x)=\left\{\begin{array}{ll}\frac{1}{2}+x, & -\frac{1}{2}<x<0 \\ \frac{1}{2}-x, & 0<x<\frac{1}{2}\end{array}\right.$.
(b) Find Laplace transform of $\left(1+t e^{-2}\right)^{3}$.
(c) Find inverse Laplace transform of $\tan ^{-1} \frac{2}{s}$.
(d) Evaluate $\int_{0}^{1} \sqrt[3]{x \ln \left(\frac{1}{x}\right)} d x$.
(e) Evaluate $\int x^{2} \mathrm{~J}_{1}(x) d x$.
(f) By eliminating arbitrary function, form a partial differential equation from

$$
z=x^{n} f\left(\frac{y}{x}\right)
$$

(g) Solve the given partial differential equation $p-q=\ln (x+y)$.
(h) Show that imaginary part of an analytic function is harmonic.
(i) Find the orthogonal trajectories of the family of curves $x^{3} y-x y^{3}=c=$ constant.
(j) State Cauchy's integral formula.

## SECTION-B

2. Find the Fourier series of $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
3. Using Laplace transform, solve $y^{\prime \prime}+4 y=u(t-2), y(0)=0, y^{\prime}(0)=1$, where $u(t)$ is a unit step function.
4. Using Frobenius method, find the general solution of $8 x^{2} y^{\prime \prime}+10 x y^{\prime}-(1+x) y=0$.
5. Solve given partial differential equation $\left(2 \mathrm{D}_{x}^{2}+5 \mathrm{D}_{x} \mathrm{D}_{y}+2 \mathrm{D}_{y}^{2}\right) z=0$.
6. Verify that $u=3 x y^{2}-x^{3}$ is harmonic and find its conjugate harmonic function.

## SECTION-C

7. (a) Use Laplace Transform to solve given system of simultaneous differential equations $\frac{d x}{d t}-y=e^{t}, \frac{d y}{d t}+x=\sin t$, where $x(0)=1$ and $y(0)=0$.
(b) For Legendre polynomials $P_{n}(x)$ show that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1}$ when $m=n$.
8. (a) State and prove Convolution for Laplace transform.
(b) A bar of 30 cm length has its ends kept at $20^{\circ}$ and $80^{\circ}$ respectively until steady-state condition prevail. The temperature at each end is then suddenly reduced to $0^{\circ}$ and maintained thereafter, Find the temperature in bar.
9. (a) Find Laurent series of $\frac{z}{(1+z)(z+2)}$ about $\mathrm{z}_{0}=-2$.
(b) Using Residue theorem, evaluate $\int_{\mathrm{C}} \frac{\tan z d z}{\left(z^{2}-1\right)}, \mathrm{C}:|z|=\frac{3}{2}$.
