

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages:02
Total No. of Questions:09	
B.Tech.(Aerospace Engg.) (2012 C AFRODYNAMIC	Dnwards) (Sem.–5) S-II
Subject Code : ASP	E-303
Paper ID:[A292	9]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt ANY FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt ANY TWO questions.

SECTION-A

Q.1 Attempt the following :

- a) Define induced drag.
- b) Define Drag Divergence Mach number and explain its importance.
- c) Define supersonic leading edge
- d) Explain the effect of fowler flap on lift curve with the help of a sketch.
- e) Explain transonic area rule.
- f) Explain the importance of 'velocity potential equation'.
- g) Explain laminar boundary layer.
- h) What do you mean by adverse pressure gradient?
- i) Define compressibility.
- j) What do you mean by non-lifting flows?

www.FirstRanker.com

SECTION-B

- Q.2 How lifting flow over circular cylinder is generated? Obtain the relevant expressions.
- Q.3 Derive Navier-Stokes equations for two dimension flow.
- Q.4 Define Prandtl-Glauert Rule for subsonic flow. Calculate lift curve slope of a profile at $M_{\infty} = 0.32$ using P-G rule for the following given data :

 $C_L = 0.2$ at $\alpha = 3^\circ$ and $C_L = -0.1$ at $\alpha = -2^\circ$.

- Q.5 Explain the turbulent boundary layer properties over a flat plate at low speeds.
- Q.6 Explain Prandtl's lifting line theory and its limitations.

SECTION-C

Q.7 a) Explain the various factors affecting critical mach number.	
b) Linearize velocity potential equation.	(6)
Q.8 Write notes on the following :	
a) Simplified horse-shoe vortex model	(5)
b) Subsonic flow past an axially symmetric body at zero incidence	(5)
Q.9 a) Derive expression for induced drag coefficient for a wing having elliptical planform.(6)	
b) Define downwash. Explain the influence of downwash on tail plane.	(1,3)