Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech.(ME) (2011 Onwards) (Sem.-6)
 STATISTICAL AND NUMERICAL METHODS IN ENGINEERING
 Subject Code: BTME-604
 Paper ID : [A2364]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) A class consists of 6 girls and 8 boys. If a committee of 3 is chosen at random from the class, find the probability that exactly 2 boys are selected.
b) A fair die is tossed 7 times. Find the probability of getting a 5 or 6 exactly 3 times.
c) A population consists of four numbers $2,8,14,25$. Find the population mean and the population standard deviation.
d) Find $\mathrm{P}\left(-t_{0.025}<t<t_{0.01}\right)$.
e) If the number p is correct to 3 significant digits, what is the maximum relative error?
f) State Newton-Gregory forward difference interpolation formula.
g) State Simpson's $1 / 3$ rule.
h) Find the mean and mode of the set $2,4,7,4,9,9,5,9$.
i) Define a random variable.
j) Give two properties of a Binomial distribution.

SECTION-B

2. Find a positive root of $x^{2}-12=0$ using Newton-Raphson's method.
3. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at $x=16$ from the following table :

\boldsymbol{x}	15	17	19	21	23	25
$\boldsymbol{f}(\boldsymbol{x})=\sqrt{x}$	3.873	4.123	4.359	4.583	4.796	5.0

Compare with the exact values.
4. Using Taylor series expansion find $y(0.1)$ when $y^{\prime}=x-y^{2}, y(0)=0$.
5. On an average, 1.3 Gamma particles / millisecond come out of a radioactive substance. Determine the a) mean b) variance c) probability of more than one Gamma particle/millisecond come out of the substance.
6. Calculate the probability that \bar{X} will be greater than 66.75 if a random sample of size 36 is taken from an infinite population having the mean $\mu=63$ and variance $\sigma^{2}=81$.

SECTION-C
7. Determine the largest eigen value and the corresponding eigen vector of the matrix

$$
A=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

8. Using Milne's predictor-corrector method evaluate the integral of $y^{\prime}-4 y=0$ at $x=0.4$, 0.5 given that $y(0)=y_{0}=1, y(0.1)=y_{1}=1.492, y(0.2)=y_{2}=2.226 ; y(0.3)=y_{3}=3.320$.
9. Given the values of $u(x, y)$ on the boundary of the square of figure below, evaluate the function $u(x, y)$ satisfying the Laplace equation at the pivotal points of this figure by Jacobi's method.

Fig. 1

