Roll No.
प| | ||l|l|l|l

Total No. of Pages : 02
Total No. of Questions: 18

# B.Tech.(CSE) (O.E. 2011 Onwards) (Sem-6) <br> OPTIMIZATION TECHNIQUES <br> Subject Code : CH-304 <br> Paper ID : [A2643] 

Time: 3 Hrs.
Max. Marks : 60

## INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## SECTION-A

1. What is discontinuous function? How can one check the continuity of a function?
2. Give the classification of optimization problems.
3. Consider the objective function: $f\left(x_{1}, x_{2}\right)=6 x_{1}^{2}+6 x_{1} x_{2}+x_{2}^{3}+3 x_{2}^{2}$. Is it convex?
4. State the Kuhn-Tucker conditions.
5. Find the volume of the largest right circular cylinder that can be inscribed inside a Sphere of radius R.
6. What is difference between local optimal point and global optimal point?
7. State disadvantages of Newton's method for one-dimensional search.
8. What is basic feasible solution in simplex method?
9. Define the property of continuity.
10. What are the characteristics of direct search methods?

## SECTION-B

11. Consider the objective function,

$$
f(x)=x_{1}^{2}+2 x_{1}+3 x_{2}^{2}+6 x_{2}+4
$$

Find the stationary points and classify them using the Hessian matrix.
12 Find the dimensions of a cylindrical tin (with top and bottom) made up of a sheet metal to maximize its volume such that the total surface area is equal to $22 \pi$.
13. Minimize $f(x)=x^{4}-x+1$ using Newton's method, starting point $x=0.3$.
14. Locate the minimum value of a function $\mathrm{f}=(x-30)^{2}$ to within an accuracy of $1 \%$ if the initial range of search is $0 \leq x \leq 100$ by using golden section method.
15. Apply golden section search technique to reduce the interval of uncertainty for the maximum of the function $f=6.64+1.2 x-x^{2}$, from $[0,1]$ to less than $2 \%$ of its original size.

## SECTION-C

16. Find the minimum of $f=x(x-1.5)$ in the interval $(0,1)$ to within $5 \%$ of the exact value, using interval halving method.
17. Estimate the minimum of $f(x)=3 x^{2}+\frac{12}{x^{3}}-5$ in the interval $\frac{1}{2} \leq x \leq \frac{5}{2}$.
by using Powell's Method, with initial point $x 1=0.5$ and step size $\Delta=0.5$. For convergence parameters use
$\left|\frac{\text { Difference in } x}{x}\right| \leq 3 \times 10^{-2}$ and $\left|\frac{\text { Difference in } F}{F}\right| \leq 3 \times 10^{-3}$
18. The function $f(x)=\left(1+8 x_{1}-7 x_{1}^{2}+\frac{7}{3} x_{1}^{3}-\frac{1}{4} x_{1}^{4}\right)\left(x_{2}^{2} e^{-x_{2}}\right) F\left(x_{3}\right)$

Has two maxima and one saddle point. For
(a) $F\left(x_{3}\right)=1$ and (b) $F\left(x_{3}\right)=x_{3} e^{-\left(x_{3}+1\right)}$

Locate the global optimum by a search technique.

