www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions: 09

FirstRanker.com

B.Tech.(Aerospace Engg.) (2012 Batch) (Sem.-6) VIBRATION AND STRUCTURAL DYNAMICS Subject Code :ASPE-311 Paper ID : [72456]

Time: 3 Hrs.

Roll No.

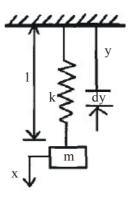
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

Q1 Attempt the following :


- a) Classify any four types of vibration.
- b) What is the equivalent stiffness of spring combinations in series? Show with diagram.
- c) What is critical damping in vibratory system?
- d) What is Transmissibility?
- e) Define Energy Method for vibration analysis.
- f) What is defined as Critical speed of a shaft?
- g) State Maxwell's reciprocal theorem.
- h) What are torsional vibrations?
- i) What are Continuous Systems in vibrations?
- j) Explain the phenomenon of Resonance.

www.FirstRanker.com

SECTION-B

Q2 Determine the effect of the mass of the spring on the natural frequency of the system as shown in the figure below; (assume values if needed)

Where, x is displacement of the mass 'm' k is the stiffness of the spring.

- Q3 What are Vibration Measuring Instruments? Explain Vibrometer.
- Q4 Discuss Vibration Isolation. Elaborate on various means of vibration isolators.
- Q5 Explain co-ordinate coupling with the help of a neat sketch.
- Q6 Derive the One-Dimensional wave equation for lateral vibrations of a string.

SECTION-C

Q7 A vibrating system having mass 1kg is suspended by a spring of stiffness 1000 N/m and it is put to harmonic excitation of 10N. Assuming damping, determine;

	a) The resonant frequency.	(2)
	b) The phase angle at resonance.	(2)
	c) The amplitude at resonance.	(2)
	d) The frequency corresponding to the peak amplitude.	(2)
	e) Damped frequency	(2)
Q8	A gun barrel having mass 560kg is designed with the following data:	
	Initial recoil velocity = 36 m/sec ; Recoil distance on firing = 1.5 m	
	Calculate :	
	a) Spring constant.	(3)
	b) Damping coefficient.	(3)
	c) Time required for the barrel to return to a position 0.12m from its initial position.	(4)
Q9	Explain the following methods for system having several degrees of freedom :	
	a) Dunkerley's method.	(5)
	b) Stodola's method.	(5)

2	Μ	-	7	2	4	5	6	
---	---	---	---	---	---	---	---	--

www.FirstRanker.com