

Roll No.						Total No. of Pages: 0

Total No. of Questions: 09

B.Tech.(Aerospace Engg.) (2012 Batch) (Sem.-6)

FINITE ELEMENT METHODS Subject Code: ASPE-313

Paper ID : [72458]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly:

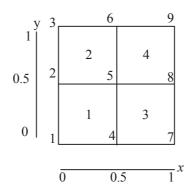
- a. What is weight function in Galerkin's method?
- b. Taking a suitable example of governing equations explain essential boundary conditions. What makes a condition to qualify as essential boundary condition?
- c. Explain practical application of finite element method, giving suitable examples.
- d. Describe different types of errors in solution calculates using finite element method.
- e. What is Stiffness matrix? Explain its properties.
- f. Draw and explain typical element used in finite element method. Label all the information possible.
- g. Derive the interpolation functions for a four-node iso--parametric quadrilateral element.
- h. What do you understand by convergence of solution in FEM?
- i. Derive the expression for shape function for:
 - i. 8 node 2D quadrilateral element.
 - ii. 5 node 2D quadrilateral transition element.
- j. What is Jacobian matrix?

1 M-72458 (S2)-1995

SECTION-B

- 2. Given function $f(s,t) = (s^2+st)t^4$, integrate f(s,t) in the domain where both 's' and 't' varies from -1 to 1. Use thumb rule to determine number of points for integration. (2+3=5)
- 3. a) Illustrate the conditions for valid iso-parametric mapping both for 1D and 2D problem.
 - b) Determine if the iso-parametric mapping for the 4 node quadrilateral element is valid. Xn=[0 2 0 3] and Yn=[0 0 2 3]
- 4. Use a tree node element of length 2L and derive the corresponding force matrix that defines the distribution of body force for each node.
- 5. Use Hermite's interpolation formula to derive cubic shape functions for transverse deflection of beam.
- 6. The one dimensional steady state heat conduction equation is:

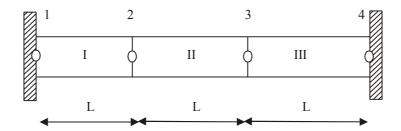
$$\frac{d^2T}{dx^2}\frac{Q}{k}$$

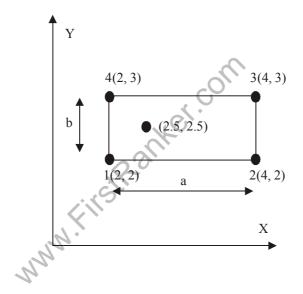

Assume boundary condition as T(0) = T(L) = 0 and the exact solution is

$$T = \frac{Q}{2k}(x^2 - xL)$$

Obtain approximate solution using Galerkin's method.

SECTION-C


7. Solve 2D Boundary value problem in the form of given laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \ 0 < x < I \ \text{and} \ 0 < y < I \ \text{The given boundary conditions are: } u(0,y)=0; \ u(1,y)=0; \ u(x,0)=x(1-x); \ u(x,1)=0. \ \text{Solve using 4 square elements as shown}$


2 M-72458 (S2)-1995

8. Assume a uniform rod of elastic material fixed at both ends with constant cross-section, and length 3L. A uniform body force (f) is acting on it in upward direction. Use three element of length L and formulate the Rayleigh-Ritz solution using shape functions rather than interpolation formulas to find out nodal displacement, reaction forces. If the exact solution is such that; $u = f \frac{3lx - x^2}{2E}$ then find the error at node 2 and 3.

9. A quadrilateral element is shown in x,y coordinate system in figure below. The temperature at each node is such that; $T_1=100^\circ$, $T_2=60^\circ$; $T_3=50^\circ$, and $T_4=90^\circ$. Derive the shape function to calculate the temperature at x=2.5 and y=2.5

3 M-72458 (S2)-1995