

Roll No.								Total No. of	Pages:	02
							i otal No. oi i agoo .			

Total No. of Questions: 09

B.Tech (Electronics Engineering) (E-1 2012 Onwards) (Sem.-6)

MICROWAVE AND RADAR ENGINEERING

Subject Code: BTEEE-603B Paper ID: [72843]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What are the high frequency limitations of vacuum tubes? How they overcome in microwave tubes?
- b) List the main disadvantages of two hole directional coupler.
- c) Differentiate between transferred electron devices and transistors.
- d) Name the errors possible in VSWR and impedance measurement.
- e) Differentiate between scanning and tracking.
- f) What are the factors that determine the range of radar?
- g) Let the generator's transmitting frequency be 3 GHz. A target is moving radially towards generator with a velocity of 360 Km/hour. What is the frequency of the target?
- h) Let the maximum range of radar be doubled with all the other factors remaining constant. By what factor the peak power must be increased?
- i) What will be the value of PRT when PRF = 1500 Hz?
- j) What is meant by blind speed?

1 | M-72843 (S2)-2118

SECTION-B

- 2. a) Derive an expression for the efficiency of a two cavity klystron amplifier, starting from basic principles.
 - b) A reflex klystron operates at the peak mode of n = 2 with $V_0 = 280$ V, $I_0 = 22$ mA and signal voltage $V_i = 30$ V. Determine (a) the input power (b) output power (c) efficiency.
- 3. a) Describe the physical structure of an IMPATT diode, identifying its doping profile characteristics.
 - b) Explain construction, fabrication and encapsulation of Gunn diode. Mention its characteristics and applications of a Gunn diode.
- 4. Write a short note on
 - a) Microwave Hybrid Circuits
 - b) Circulator and Isolator
- 5. a) Describe how can the power of a microwave generator be measured?
 - b) What are directional couplers? Define directivity, coupling factor, isolation and insertion loss of directional couplers. Also, discuss in brief Bethe hole coupler and bi-directional couplers.
- 6. a) What do you understand by maximum theoretical range? Simplify the equation to express the maximum range in km to the following form

$$r_{\text{max}} = 48 \left[\frac{P_1 D^4 S}{\delta f \lambda^2 (F - 1)} \right].$$

b) An MTI radar operates at 5GHz with a pulse repetition frequency (PRF) of 800pps. Calculate the lowest three blind speeds of this radar.

SECTION-C

- 7. a) Explain the working of a simple CW Doppler radar with the help of a block diagram.
 - b) What is PRF? Explain how the ambiguous range echoes can be recognized by changing the PRF of the radar.
- 8. a) Derive Scattering matrix for directional coupler using S parameter theory.
 - b) What do you mean by insertion loss? A three port circulator has an insertion loss of 1.1 dB, isolation of 20 dB, VSWR = 1.25 when all ports are matched terminated. Find S matrix and output power at port 2 and 3 for an input power of 100 mW at port.
- 9. Write Short notes on the following:
 - a) Angle tracking Systems
 - b) Range tracking Systems

2 M-72843 (S2)-2118