\square
Total No. of Questions : 09

B.Tech.(ANE) (Sem.-7,8)
 THEORY OF ELASTICITY
 Subject Code : ANE-414
 Paper ID : [A2069]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Difference between plane stress and plane strain problems.
b) Biharmonic equation in terms of stress function.
c) Governing equation of equilibrium forstress distribution in determing rotating discs.
d) Stress-optic law.
e) Plane Polariscope.
f) Stress-director surface,
g) Saint-venant approach for solving torsion problems.
h) Strain components in terms of displacements in polar coordinates.
i) Assumptions made in solving torsion problems by semi-inverse method.
j) Isoclinics and Isochromatics.

SECTION-B

2. Show that the equation of compatibility is given by

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\delta_{x}+\delta_{y}\right)=\delta
$$

What are the assumptions under which this equation is valid?
3. Establish an analogy relating to the torsion of an arbitrarily shaped bar to the deflected shape of a membrane.
4. An Airy Stress function is:

$$
\phi=\mathrm{A} x y^{3}
$$

Sketch the stress components on a rectangular plate shown in Fig 1. assuming the constant A is be positive.

Fig. 1
5. A narrow rectangular strip shown in Fig. 2 is subjected to a torque of 7.5 kNm . Calculate:
a) The rate of twist
b) The maximum shear stress

Given $\mathrm{G}=100 \mathrm{GN} / \mathrm{m}^{2}$

Fig. 2
6. The radial stress distribution in a circular disc of radius b with a circular hole of radius a at the centre rotating with an angular velocity ω is given by:

$$
\delta_{r}=\left(\frac{3+\mu}{8}\right) \rho \omega^{2}+\left[b^{2}+a^{2}-\frac{a^{2} b^{2}}{r^{2}} r^{2}\right]
$$

Show that:

$$
\left(\delta_{r}\right)_{\max }=\beta\left(\frac{3+\mu}{8}\right) \rho \omega^{2}
$$

State the value of β in terms of a and b.

SECTION-C

7. A bar of narrow rectangular cross-section with a circular axis is constrained at the lower end and bent by a force P applied at the other end in a radial direction as shown in Fig 3.

Using the stress function

$$
\phi=\left(\mathrm{A} r^{3}+\frac{\mathrm{B}}{r}+C r+\mathrm{D} r \log r\right) \sin \theta,
$$

Obtain the stress components $\delta_{r}, \delta_{\theta}$ and $\tau_{r \theta}$.

Fig. 3
8. Making suitable assumptions, derive expressions for stress and displacement distribution in a bar which is stretched by its own weight.
9. Write notes on:
(a) Saint-venant method of solving Torsion problems of prismatical bars
(b) Three Dimensional Photoelasticity.

