FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(Civil Engineering) (Sem.–7) SOIL DYNIMICES AND MACHINE FOUNDATION Subject Code : BTCE-811 Paper ID : [A2965]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
- 4. Any missing data may be assumed appropriately. Use of IS 2974 (Section A & Section B) and IS 5249 is permitted.

SECTION-A

1. Answer briefly :

- a) What are the stress conditions on soil under dynamic load?
- b) Differentiate between frequency and vibration.
- c) What do you understand by Rayleigh's method?
- d) Give principles of vibration measuring instruments.
- e) Define soil spring constant and its significance.
- f) Differentiate between damping and Magnification factor.
- g) What are different types of machines?
- h) What are problems associated with machine foundation?
- i) Give IS code provisions for Impact machine foundation.
- j) Write note on transmissibility.

www.FirstRanker.com

SECTION-B

- Q2. What do you understand about wave propagation in elastic half space?
- Q3. Derive an expression for logarithmic decrement in terms of damping factor.
- Q4. Using Barkan's approach determine the coefficient of uniform compression, if a vibration test on a block $1.5m \times 0.75m \times 0.7m$ gave a resonance frequency of 20 Hz in the vertical direction. The mass of the oscillator used was 100 kg. The mass density of the test block material is 2400 kg/m³.
- Q5. Explain the resonance and its effect.
- Q6. Discuss methods of isolation for machine foundations.

SECTION-C

Q7. A cyclic plate load test was carried out on a soil deposit to estimate the elastic coefficients for the design of a compressor foundation. The test was carried out at a depth of 3m using a $0.6m \times 0.60m$ test plate. For the data given below, plot the stress versus elastic settlement relationship and determine the coefficient of elastic uniform compression at (i) $0.6 \times 0.6m$ plate area and (ii) $10m^3$ footing area. Take Poisson's ratio = 0.35 and unit weight of soil = 18 kN/m^2 .

Stress (kN/m²)50100150200250300350Elastic settlement (mm)0.050.280.520.81.061.341.6

- Q8. Derive equation for block foundation subjected to rocking, sliding and vertical vibrations.
- Q9. Design a suitable foundation block for a double acting steam hammer whose data are given below.

Weight of the falling ram = 5.0 t. height of the drop = 1.5 m.

Area of the piston = 0.2 m^2 . Average steam pressure on piston = 120 t/m^2 . Weight of the anvil = 100.0 t. Base area of the anvil = 6.0 m^2 . Weight of the frame = 1.5 t, which is fixed to the foundation block.

The thickness of the pad under the anvil is 0.60 m. 'E' of the material of pad = 5.0×104 t/m². Coefficient of impact (restitution) = 0.65. Soil properties : coefficient of uniform compression = Cu = 4.5×10^3 t/m³. Mass density of soil = 1.9 g/cc. Safe bearing capacity of the soil is 25 t/m².

2 M-71870

(S2)-2495