FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Roll No						

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (ANE) (Sem.-7,8) AIRPLANE DESIGN Subject Code : ANE-413 M.Code : 70495

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- Q1 Distinguish between the following terms (use sketches wherever required) :
 - a) Dihedral & Anhedral angle
 - b) Lift curves for symmetric & cambered airfoils
 - c) Wash-in & wash-out
 - d) Freestream Mach number & critical Mach number
 - e) Low & High wing loading
 - f) Equivalent airspeed & true airspeed
 - g) Geometric angle of attack & absolute angle of attack
 - h) Cruise & loiter
 - i) Slat & Slot
 - j) Equilibrium condition & stability

SECTION-B

- Q2 Explain the difference between 'Flight envelope' and 'gust envelope' of an aircraft with help of a neat & labeled diagram. (5)
- Q3 Explain the features of various types of inlets used in high subsonic & supersonic aircrafts with the help of neat and labeled sketches. (5)

FirstRanker.com

www.FirstRanker.com

- Q4 Explain various factors affecting the selection of airfoil section. (5)
- Q5 Calculate the stroke of oleo-type shock absorber with the help of data given below for an aircraft making a touchdown on a runway at sea level at forward and vertical speeds of 35 m/s and 5 m/s respectively.

Rolling radius = 40 cm	Wheel width = 20 cm	Wheel diameter = 90 cm					
$\eta = 0.8$	Tire efficiency = $\eta_T = 0.45$	Gear Load factor = N _{gear} =	= 3				
Also calculate the weight on wheel for a given pressure of 15 bar.							

Q6 What are boundary layer diverters? Give two examples with brief description. (5)

SECTION-C

Q7 A 250 seated jet aircraft with the following given data is flying at 10 km altitude. (1.5, 2.2)

(1, 5, 2, 2)

 $M_{cruise} = 0.7 \text{ Mach}$ $M_{loiter} = 0.5 \text{ Mach}$ Cruise = 6000 km Loiter = 80 minutes

 $(L/D)_{max} = 16$ $C_{cruise} = 0.54/hour C_{loiter} = 0.44/hour \rho = 0.4135 \text{ kg/m}^3$

 $p = 26000 \text{ N/m}^2$ $W_e/W_0 = 0.97 W_0^{-0.06}$ $W_{Payload} = 5000 \text{ kg } W_{Passenger} = 65 \text{ kg/passenger}$

- a. Draw Mission segment.
- b. Estimate weight of the aircraft.
- c. Estimate empty weight
- d. Estimate fuel weight
- Q8 a. For the aircraft in Q.7, what will be the weight and %age change in weight if the aircraft is to be designed for additional payload of 2000 kg? (4, 1)
 - b. Discuss different types of seating arrangements in passenger aircrafts using sketches.

(5)

(5,5)

- Q9 Write notes on the following :
 - a. Airworthiness and responsibilities of airworthiness authorities.
 - b. Role of composite material in modern aircrafts

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.