FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech (Civil Engineering) (2011 onwards) E-I & II (Sem.–7, 8) DYNAMICS OF STRUCTURES Subject Code : BTCE-806 M.Code : 71865

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. Answer briefly :
 - a) Write a short note on D' Alembert's Principle.
 - b) Compare between free and forced vibration.
 - c) What do you mean by damping? What are its forms?
 - d) Discuss the significance of periodic loading.
 - e) State the principle of virtual displacements.
 - f) List different methods to find the mode shapes and frequencies.
 - g) Write the formula of Duhamel's integral for dynamic loading.
 - h) Differentiate between two DOF and MDOF.
 - i) What is resonant frequency ratio?
 - j) Write the mathematical equation for equivalent stiffness for springs in parallel and springs in series.

SECTION-B

2. Differentiate between impulsive, periodic and general dynamic loadings.

www.FirstRanker.com

3. For rectangular forcing function of fig.l determine the Fourier transform.

FIG.1

- 4. Write various steps to complete dynamic response of structure by model superposition techniques with response spectrum method.
- 5. Explain how mathematical modeling can be done for a multi-degree freedom system.
- 6. Derive the equation of motion of single degree of freedom system for free vibration and hence find the solution for under damped system.

SECTION-C

- 7. Describe the Stodola's method for finding frequencies and mode shapes for a vibrating system.
- 8. Determine the natural frequencies and corresponding mode shapes for the system, shown in fig.2.

- 9. Write short notes on
 - a) Consistent mass and lumped mass.
 - b) Viscous damping and negative damping.
 - c) Duhamel's integral.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.