Roll No. \square
Total No. of Questions : 07

B.Sc.(Computer Science) (2013 \& Onwards) (Sem.-5)
 NUMERICAL ANALYSIS
 Subject Code : BCS-501
 Paper ID : [72574]

Max. Marks : 60
Time : 3 Hrs.

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

1. Write briefly :
a) Find the inverse of $\mathrm{A}=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$ by Gauss Jordan method.
b) State Newton's backward formula for interpolation.
c) Describe Newton Raphson method geometrically.
d) Perform two iterations of false position method to obtain a real root of the Equation $x^{3}-2 x-5=0$
e) Given $y^{\prime}=x+y, y(0)=1$, find $y(0,1)$ by Euler's method.
f) Compute the resulting error in $f(x)=x^{3}$ for given value of $x=3.42$ with an error of $\Delta x=0.003$
g) Write the finite difference approximation of $y^{\prime}(x)$ and $y^{\prime \prime}(x)$.
h) Prove that $\mu \delta=\frac{1}{2}(\Delta+\nabla)$.
i) Find $\frac{d y}{d x}$ at $x=0,1$ from the following table :

\boldsymbol{x}	0.1	0.2	0.3	0.4
\boldsymbol{y}	0.9975	0.9900	0.9776	0.9604

j) If

$\boldsymbol{x}:$	0	0.5	1	1.5	2	
$\boldsymbol{f}(\boldsymbol{x}):$	0	0.25	1	2.25	4	
2						

Find the value of $\int_{0}^{2} f(x) d x$ by Simpson's $1 / 3$ rule.

SECTION-B

2. a) Find the real root of the equation $3 x=\cos x+1$ correct to four decimal places by Newton Raphson's method.
b) Determine the value of $\sin 38^{\circ}$, where the values of x in degrees and $\sin x$ are given in the following table :

\boldsymbol{x}	15	20	25	30	35	40
$\boldsymbol{\operatorname { s i n } \boldsymbol { x }}$	0.2588190	0.3420201	0.4226183	0.5	0.5735764	0.6427876

3. a) Solve by Triangular method: $2 x+3 y+z=9 ; x+2 y+3 z=6 ; 3 x+y+2 z=8$.
b) Discuss the rate of convergence of Muller's method.
4. a) Fit the curve $y=a e^{b x}$ to the following data :

\boldsymbol{x}	2	4	6	8
\boldsymbol{y}	25	38	56	84

b) Solve the differential equation $\frac{d y}{d x}=1+x z, \frac{d z}{d x}=-x y$ for $x=0.3$ using fourth order Runge Kutta method with initial values $x=0, y=0, \mathrm{z}=1$.
5. a) Evaluate : $\Delta^{4}=(1-x)(1-2 x)(1-3 x)(1-4 x), h=1$
b) Using Newton's forward interpolation formula, show that

$$
\sum n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

6. a) Use Romberge's method to compute $\int_{0}^{1} \frac{d x}{1+x^{2}}$ correct to 4 decimal.
b) Using Milne's method find $y(4.4)$ given $5 x y^{\prime}+y^{2}-2=0$, such that $y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143, y(4.4)=1.087$
7. a) Apply Bessel's formula to obtain y_{25} given that $y_{20}=2854, y_{24}=3162, y_{28}=3544$, $y_{32}=3992$.
b) If $\mathrm{V}=\frac{1}{2}\left(\frac{r^{2}}{h}+h\right)$ and the error in V is the most 0.4%. Find the percentage error allowable in r and h when $r=5.1 \mathrm{~cm}$ and $h=5.8 \mathrm{~cm}$.
