

www.FirstRanker.com

www.FirstRanker.com

Roll No.	al No. of Pages : 02
Total No. of Questions : 07	
B.Sc.(Computer Science) (2013 & Onwards) NUMERICAL ANALYSIS Subject Code : BCS-501 Paper ID : [72574]	(Sem.–5)
Time : 3 Hrs.	Max. Marks:60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

- 1. Write briefly :
 - a) Find the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Gauss Jordan method.
 - b) State Newton's backward formula for interpolation.
 - c) Describe Newton Raphson method geometrically.
 - d) Perform two iterations of false position method to obtain a real root of the Equation $x^3 2x 5 = 0$
 - e) Given y' = x + y, y(0) = 1, find y(0, 1) by Euler's method.
 - f) Compute the resulting error in $f(x) = x^3$ for given value of x = 3.42 with an error of $\Delta x = 0.003$

- g) Write the finite difference approximation of y'(x) and y''(x).
- h) Prove that $\mu \delta = \frac{1}{2} (\Delta + \nabla)$.
- i) Find $\frac{dy}{dx}$ at x = 0.1 from the following table : **r** 0.1 0.2 0.3 0.4

1 | M-72574

(S3)-84

www.FirstRanker.com

SECTION-B

- 2. a) Find the real root of the equation $3x = \cos x + 1$ correct to four decimal places by Newton Raphson's method.
 - b) Determine the value of $\sin 38^\circ$, where the values of x in degrees and $\sin x$ are given in the following table :

x	15	20	25	30	35	40
sin x	0.2588190	0.3420201	0.4226183	0.5	0.5735764	0.6427876

- 3. a) Solve by Triangular method : 2x + 3y + z = 9; x + 2y + 3z = 6; 3x + y + 2z = 8.
 - b) Discuss the rate of convergence of Muller's method.
- 4. a) Fit the curve $y = ae^{bx}$ to the following data :

x	2	4	6	8
y	25	38	56	84

b) Solve the differential equation $\frac{dy}{dx} = 1 + xz$, $\frac{dz}{dx} = -xy$ for x = 0.3 using fourth order Runge Kutta method with initial values x = 0, y = 0, z = 1.

5. a) Evaluate : $\Delta^4 = (1 - x) (1 - 2x) (1 - 3x) (1 - 4x), h = 1$

b) Using Newton's forward interpolation formula, show that

$$\sum n^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

- 6. a) Use Romberge's method to compute $\int_{0}^{1} \frac{dx}{1+x^2}$ correct to 4 decimal.
 - b) Using Milne's method find y(4.4) given $5xy' + y^2 2 = 0$, such that

$$y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143, y(4.4) = 1.087$$

- 7. a) Apply Bessel's formula to obtain y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.
 - b) If $V = \frac{1}{2} \left(\frac{r^2}{h} + h \right)$ and the error in V is the most 0.4%. Find the percentage error allowable in *r* and *h* when *r* = 5.1 cm and *h* = 5.8 cm.

2 M-72574