www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (CS) (2013 & Onwards) (Sem.-5) FUNDAMENTALS OF DYNAMICS

Subject Code: BCS-502 Paper ID: [72575]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

Q1. Answer briefly:

- a) Why the curved tracks are generally banked?
- b) Distinguish between mass and weight.
- c) What acceleration is produced in a mass of 100 kg by a force of 720 N?
- d) What is conservative force? Show that central force is conservative.
- e) Derive an expression for maximum height of projectile at any instant.
- f) What does conservation of energy mean?
- g) What is the gravitational constant?
- h) What is centre of mass frame of reference?
- i) What do you mean by simple harmonic motion?
- i) Describe Kepler's second law.

SECTION-B

- Q2. a) A train of mass 2×10^5 kg is travelling at 45 km/h. The engine is put off and the brakes are applied. What is the force of retardation if the train stops in 100 s?
 - b) An object dropped from a balloon reaches the ground in 20 s. determine the height of the balloon when the object was dropped if
 - (i) It was at rest in the air and
 - (ii) It was ascending with a speed of 50 m/s when the object was dropped.
- Q3. a) What is the principle of conservation of linear momentum? Show that the linear momentum of a system of particles remains constant in the absence of any external force acting on it.
 - b) When one sharpens a knife on a grinding wheel, the spark particles fly at a tangent to the wheel, why?
- Q4. a) A 1000 kg car is coating down an incline of 30°. At a time when the car's speed is 12 m/s, the driver applies the brakes. What constant force parallel to the incline must result if the car is to stop after travelling 100 m?
 - b) A mass moves in a circle of radius 50 cm at 2 revolutions per second. Calculate the linear speed and the acceleration of the body.
- Q5. Write an expression for the angular momentum of a system of particles and use it to obtain an expression for the torque acting on the system.
- Q6. Prove that the kinetic energies of two colliding particles in the centre of mass system are inversely proportional to their masses.
- Q7. How does Kepler's third law of planetary motion provide evidence that the force between a planet and sun obeys inverse square law?

2 | M - 72575 (S3)-173