Roll No. \square
Total No. of Questions: 07
B.Sc.(CS) (2013 Batch) (Sem.-6)

LINEAR ALGEBRA
Subject Code: BCS-602
Paper ID : [72782]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

Q1 Answer the followings in short :
a) Define Division ring and Field with examples.
b) Show that $\{1, \sqrt{2}\}$ is linearly independent in R over Q.
c) Under what condition on scalar τ do the vectors (1, 1,1), ($1, \tau, \tau^{2}$) and ($1,-\tau, \tau^{2}$) forms a basis of C^{3} ?
d) Define Quotient Space and its dimension.
e) Any $n+1$ members of vector space V of dimension n are Linearly Dependent. Prove it.
f) State Sylvester Law of Nullity.
g) Check whether a mapping $T: R^{3} \rightarrow R$ defined by $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is a linear transformation?
h) Determine the complement of the subspace of V generated by $\{(1,1,0),(0,1,0)\}$.
i) Define the annihilator of linear transformation of vector space over field,
j) Find the co-ordinate vectors if v in R^{3} relative to the basis $\{(1,1,1),(1,1,0),(1,0,0)\}$.

SECTION-B

Q2 If U and W are subspaces of a finite dimensional vector space over F then prove that

$$
\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)
$$

Q3 a) Let V be a vector space over an infinite field. Prove that V cannot be written as set theoretic union of a finite number of proper subspaces z.
b) If x, y and z are vectors in vector space over F such that $x+y+z=0$, then show that x and y span the same subspace as y and z .

Q4 Let V be a finitely generated vector space over a field. Prove that V has a finite basis and any two bases of V have same number of vectors.

Q5 Let U and V be two subspaces of a vector space W. Show that $(U+V) / U \cong V /(U \cap V)$.
Q6 a) Show that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is non-singular iff T carries each linearly independent subspace of V onto linearly independent subspace of W .
b) Let T be a linear operator on V and $\operatorname{Rank}\left(\mathrm{T}^{2}\right)=\operatorname{Rank}(\mathrm{T})$. Then show that the Range $(T) \cap \operatorname{Ker}(T)=(0)$.

Q7 Show that there is a one-one correspondence between direct decomposition of a vector space and finite sets of supplementary orthogonal projections on that vector space.

