

www.FirstRanker.com

www.FirstRanker.com

	Roll No.													
--	----------	--	--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Pages : 03

Total No. of Questions : 07

BCA (2013 & Onward) B.Sc.(IT) (2015 & Onward) (Sem.–1) MATHEMATICS – I Subject Code : BSIT/BSBC-103 Paper ID : [B1110]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- 1. Write briefly:
 - a) Let $A = \{3, 6, 12, 15, 18, 21\}, B = \{4, 8, 12, 16, 20\}$. Find $(A B) \cup (B A)$.
 - b) Let $A = [\{1, 2, 3\}, \{4, 5\}, \{6, 7, 8\}]$. Find the number of elements of A.
 - c) Define an antisymmetric relation by giving suitable example.
 - d) A = (1, 2, 3) and B = {x, y, z}, and let R be a relation from A to B defined by $R = \{(1, y), (1, z), (3, y)\}$. Determine the domain and range of R.
 - e) Write down the truth table of : $\neg p \lor \neg q$.
 - f) Write down the contrapositive of the conditional proposition: $p \rightarrow q$
 - g) Define a multi graph.
 - h) Define a simple path and cycle in a graph.
 - i) Determine whether the sequence $\langle 2n \rangle$ is solution of recurrence relation

$$a_n = 3a_{n-1} - a_{n-2}$$
?

j) Find the values of a, b, c, d from the equation : $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}.$

FirstRanker.com

www.FirstRanker.com

SECTION-B

2.	If A and B are any two sets, then prove that $A - B = A \cap B^c$.	(10)
----	---	------

3. Prove the following by the principle of mathematical induction

$$1.3 + 2.4 + 3.5 + \dots + n \cdot (n+2) = \frac{1}{6}n(n+1)(2n+7).$$
⁽¹⁰⁾

- (i) Eulerian Graph
- (ii) Hamiltonian graph.
- b) Find the minimum number n of colors required to paint the following graph.

5. Find the inverse of the following matrix.

$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
(10)

6. a) Consider the following three relations on the set $A = \{1, 2, 3, 4\}$:

 $R = \{(1, 1), (1, 4), (1, 3), (3, 3)\}$ $S = \{(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)\}$ $T = \{(1, 1), (1, 4), (2, 2), (2, 3), (3, 3), (4, 4)\}$

Determine whether or not each of the above relations on A is : (6+4)

(i) reflexive; (ii) symmetric; (iii) transitive;

2 | M-10045

7.

www.FirstRanker.com

(5)

b) Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction.

a) Determine which of the following are Eulerian or Hamiltonian or both?`

b) In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea. Find : (5)(i) How many drink tea and coffee both? (ii) How many drink coffee but not tea?

www.firstRanker.com