\square
Total No. of Questions : 07
BCA (2013 \& Onward)
B.Sc.(IT) (2015 \& Onward) (Sem.-1)

MATHEMATICS - I
Subject Code : BSIT/BSBC-103
Paper ID : [B1110]
Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Write briefly:
a) Let $\mathrm{A}=\{3,6,12,15,18,21\}, \mathrm{B}=\{4,8,12,16,20\}$. Find $(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$.
b) Let $\mathrm{A}=[\{1,2,3\},\{4,5\},\{6,7,8\}]$. Find the number of elements of A .
c) Define an antisymmetric relation by giving suitable example.
d) $\mathrm{A}=(1,2,3)$ and $\mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, and let R be a relation from A to B defined by $\mathrm{R}=\{(1, y),(1, z),(3, y)\}$. Determine the domain and range of R .
e) Write down the truth table of : $\neg p \vee \neg q$.
f) Write down the contrapositive of the conditional proposition: $p \rightarrow q$
g) Define a multi graph.
h) Define a simple path and cycle in a graph.
i) Determine whether the sequence $\langle 2 n\rangle$ is solution of recurrence relation

$$
a_{n}=3 a_{n-1}-a_{n-2} ?
$$

j) Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ from the equation : $\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$.

SECTION-B

2. If A and B are any two sets, then prove that $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{c}$.
3. Prove the following by the principle of mathematical induction
$1.3+2.4+3.5+\ldots+n .(n+2)=\frac{1}{6} n(n+1)(2 n+7)$.
4. a) Define the following graphs by taking suitable examples.
(i) Eulerian Graph
(ii) Hamiltonian graph.
b) Find the minimum number n of colors required to paint the following graph.

Fig. 1
5. Find the inverse of the following matrix.

$$
\left[\begin{array}{ccc}
3 & 1 & 2 \tag{10}\\
2 & -3 & -1 \\
1 & 2 & 1
\end{array}\right]
$$

6. a) Consider the following three relations on the set $\mathrm{A}=\{1,2,3,4\}$:

$$
\begin{aligned}
& \mathrm{R}=\{(1,1),(1,4),(1,3),(3,3)\} \\
& \mathrm{S}=\{(1,1),(1,2),(3,2),(2,2),(3,3)\} \\
& \mathrm{T}=\{(1,1),(1,4),(2,2),(2,3),(3,3),(4,4)\}
\end{aligned}
$$

Determine whether or not each of the above relations on A is :
(i) reflexive; (ii) symmetric; (iii) transitive;
b) Verify that the proposition $(p \wedge q) \wedge \neg(p \vee q)$ is a contradiction.
7. a) Determine which of the following are Eulerian or Hamiltonian or both?

Fig. 2
b) In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea. Find :
(i) How many drink tea and coffee both? (ii) How many drink coffee but not tea?

