

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

|  | Roll No. |  |  |  |  |  |  |  |  |  |  |  |  |
|--|----------|--|--|--|--|--|--|--|--|--|--|--|--|
|--|----------|--|--|--|--|--|--|--|--|--|--|--|--|

Total No. of Questions : 07

BCA (Sem.–4) MATH Subject Code : BC-301 Paper ID : [B0227]

Time: 3 Hrs.

Max. Marks : 60

## INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

## **SECTION-A**

- 1. (a) Give an example of a matrix of order  $3 \times 3$  and having rank one.
  - (b) If  $\begin{bmatrix} 2a+b & a-b \\ a-c & a+b+c \end{bmatrix} = \begin{bmatrix} 10 & -1 \\ 2 & 8 \end{bmatrix}$

Find the value of a, b and c.

- (c) What is Simpson's  $\frac{1}{3}$  rule for numerical integration?
- (d) What is the relation between mean, median and mode?
- (e) Differentiate with respect to x the function  $y = x^2 \frac{1}{\sqrt{x}}$ .
- (f) Evaluate  $\int_{0}^{1} e^{2x}(e^{2x}+3)dx$ .
- (g) Find the local maximum and minimum values (if any) of the function  $f(x) = x^3 6x^2 + 12x 8$ .
- (h) Evaluate  $\int x^3 \sin x^4 dx$ .
- (i) Find inverse of the matrix  $\begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$
- (j) The sum of 20 observations is 300 and its sum of square is 5000 and median is 15. Find its coefficient of skewness.  $(10 \times 2 = 20)$

**1** M-10022

(S3)-2706



www.FirstRanker.com

## **SECTION-B**

2. (a) Find x and y if

$$x + y = \begin{bmatrix} 6 & 8 & 2 \\ 11 & 21 & -5 \end{bmatrix} \text{ and } x - y = \begin{bmatrix} 4 & -10 & -12 \\ 3 & -3 & -1 \end{bmatrix}$$

(*b*) Find the rank of the matrix

| 4            | 4 | 0            | 3  |
|--------------|---|--------------|----|
| -2           | 3 | -1           | 5  |
| 4<br>-2<br>1 | 4 | 0<br>-1<br>8 | 7_ |

3. Solve by using Gauss elimination method

(a) 
$$2x + 3y + z = 9$$
,  $x + 2y + 3z = 6$ ,  $3x + y + 2z = 8$   
(b) If  $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ , Find  $A^{-1}$  and prove that  $A^2 - 4A - 5I = 0$ 

4. (a) Find the missing frequencies in the following distribution if it is given that the mean of the distribution is 1.46.

| No. of Accidents : | 0  | 1 | 2 | 3  | 4  | 5 | Total |
|--------------------|----|---|---|----|----|---|-------|
| Frequency :        | 46 | ? | ? | 25 | 10 | 5 | 200   |

(b) Find standard deviation of the following data :

| Age under :      | 10 | 20 | 30 | 40   | 50  | 60  | 70  | 80  |  |  |
|------------------|----|----|----|------|-----|-----|-----|-----|--|--|
| No. of persons : | 15 | 30 | 53 | • 75 | 100 | 110 | 115 | 125 |  |  |

5. (a) If  $y = \sqrt{x} + \frac{1}{\sqrt{x}}$ , prove that  $2x\frac{dy}{dx} + y = 2\sqrt{x}$ .

(b) Show that of all the rectangles with a given perimeter, the square has the largest area.

6. (a) Find  $\frac{dy}{dx}$  if  $x^y = y^x$ 

(b) Evaluate 
$$\int \frac{x^2}{(x-1)(x-2)(x-3)} dx$$

7. (a) Evaluate  $\int_{0}^{\overline{4}} \sin 2x \sin 3x \, dx$ 

(b) A curve is drawn to pass through the points given by the following table :

| <i>x</i> : | 1 | 1.5 | 2   | 2.5 | 3 | 3.5 | 4   |
|------------|---|-----|-----|-----|---|-----|-----|
| <i>y</i> : | 2 | 2.4 | 2.7 | 2.8 | 3 | 2.6 | 2.1 |

## Estimate the area bounded by the curve, *x*-axis and the lines x = 1, x = 4.

**2 |** M-10022

(S3)-2706