Roll No.
Total No. of Pages : 02
Total No. of Questions: 07

> BCA (Sem.-4)
> MATH

Subject Code : BC-301
Paper ID : [B0227]
Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. (a) Give an example of a matrix of order 3×3 and having rank one.
(b) If $\left[\begin{array}{ll}2 a+b & a-b \\ a-c & a+b+c\end{array}\right]=\left[\begin{array}{rr}10 & -1 \\ 2 & 8\end{array}\right]$

Find the value of a, b and c .
(c) What is Simpson's $\frac{1}{3}$ rule for numerical integration?
(d) What is the relation between mean, median and mode?
(e) Differentiate with respect to x the function $y=x^{2}-\frac{1}{\sqrt{x}}$.
(f) Evaluate $\int_{0}^{1} e^{2 x}\left(e^{2 x}+3\right) d x$.
(g) Find the local maximum and minimum values (if any) of the function $f(x)=x^{3}-6 x^{2}+12 x-8$.
(h) Evaluate $\int x^{3} \sin x^{4} d x$.
(i) Find inverse of the matrix $\left[\begin{array}{rr}5 & 3 \\ -1 & -2\end{array}\right]$
(j) The sum of 20 observations is 300 and its sum of square is 5000 and median is 15 . Find its coefficient of skewness.
($10 \times 2=20$)

SECTION-B

2. (a) Find x and y if

$$
x+y=\left[\begin{array}{rrr}
6 & 8 & 2 \\
11 & 21 & -5
\end{array}\right] \text { and } x-y=\left[\begin{array}{rrr}
4 & -10 & -12 \\
3 & -3 & -1
\end{array}\right]
$$

(b) Find the rank of the matrix

$$
\left[\begin{array}{rrrr}
4 & 4 & 0 & 3 \\
-2 & 3 & -1 & 5 \\
1 & 4 & 8 & 7
\end{array}\right]
$$

3. Solve by using Gauss elimination method
(a) $2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8$
(b) If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, Find A^{-1} and prove that $A^{2}-4 A-5 I=0$
4. (a) Find the missing frequencies in the following distribution if it is given that the mean of the distribution is 1.46.

No. of Accidents :	0	1	2	3	4	5	Total
Frequency :	46	$?$	$?$	25	10	5	200

(b) Find standard deviation of the following data :

Age under :	10	20	30	40	50	60	70	80
No. of persons :	15	30	53	75	100	110	115	125

5. (a) If $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, prove that $2 x \frac{d y}{d x}+y=2 \sqrt{x}$.
(b) Show that of all the rectangles with a given perimeter, the square has the largest area.
6. (a) Find $\frac{d y}{d x}$ if $x^{y}=y^{x}$
(b) Evaluate $\int \frac{x}{(x-1)(x-2)(x-3)} d x$
7. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \sin 2 x \sin 3 x d x$
(b) A curve is drawn to pass through the points given by the following table :

$\boldsymbol{x}:$	1	1.5	2	2.5	3	3.5	4
$\boldsymbol{y}:$	2	2.4	2.7	2.8	3	2.6	2.1

Estimate the area bounded by the curve, x-axis and the lines $x=1, x=4$.

