

www.FirstRanker.com

www.FirstRanker.com

Roll No.						

Total No. of Pages : 02

Total No. of Questions : 09

BMCI (2014 & Onwards) (Sem.-1)

MATHEMATICS – I

Subject Code : BMCI-101

Paper ID : [A3271]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer briefly :

- a) Find all partitions of $S = \{a, b, c\}$.
- b) Find $(A \cap B)^{c}$, where

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, \}, A = \{2, 3, 4, \}, B = \{2, 4, 6, 8\}.$

- c) Define a transitive relation by giving suitable example.
- d) Define the composition of relations *R* and *S*, where *R* be a relation from set *A* to set *B* and S be a relation from set *B* to set *C*.
- e) Find the truth set for prepositional function p(x) defined on the set N of positive integers. Where p(x) be "x + 2 > 7".
- f) Define a '*contradiction*' proposition.
- g) Define and draw a multi graph.
- h) Define and draw a directed graph.
- i) Define a recurrence relation.

j) If
$$A = \begin{bmatrix} 4 & 0 \\ 3 & 6 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 7 \\ 2 & 6 \\ 3 & 4 \end{bmatrix}$ find the $3A + 5B$

www.FirstRanker.com

SECTION-B

- 2. Prove the Distributive Law: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 3. Consider the following three relations on the set $A = \{1, 2, 3\}$:

 $\mathbf{R} = \{(1, 1), (1, 2), (1, 3), (3, 3)\} \ \mathbf{S} = \{(1, 1)(1, 2), (2, 1)(2, 2), (3, 3)\}$

 $T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$

Determine whether or not each of the above relations on A is : (a) reflexive; (b) symmetric; (c) transitive; (d) Antisymmetric.

4. Determine whether the proposition : $p V \neg (p \Lambda q)$ is a tautology or not ?

		2	2	1		3	2	1]
5.	Find the product matrix AB where A =	2	0	2	and B =	0	1	3	
		1	2	3		1	2	1	

- 6. Define the following graphs by drawing suitable examples :
 - a) Eulerian Graph.
 - b) Hamiltonian graph.

SECTION-C

- 7. a) Determine whether the sequence $\langle 3n \rangle$ is solution of recurrence relation $a_n = 2a_{n-1} a_{n-2}$?
 - b) Consider the relation $R = \{(1, 3), (1, 4), (3, 2), (3, 3), (3, 4)\}$ on $A = \{1, 2, 3, 4\}$.
 - i) Find the matrix M of relation R.
 - ii) Find the domain and range of R.
 - iii)Find inverse of relation R.

[5+5]

Q8. a) Define a spanning tree. Find three spanning trees of the graph G shown below :

Graph(G)

- b) How many colors are required for coloring of above graph G. [7+3]
- Q9. Prove the following by the principle of mathematical induction:

$$1 + 3 + 5 + 8 + \dots + (2n - 1) = n^2$$
[10]

2 | M-72198

www.FirstRanker.com