Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09
BMCI (2014 \& Onwards) (Sem.-1)
MATHEMATICS - I
Subject Code : BMCI-101
Paper ID : [A3271]
Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1. Answer briefly :
a) Find all partitions of $S=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
b) Find $(A \cap B)^{c}$, where $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\},, \mathrm{A}=\{2,3,4\},, \mathrm{B}=\{2,4,6,8\}$.
c) Define a transitive relation by giving suitable example.
d) Define the composition of relations R and S, where R be a relation from set A to set B and S be a relation from set B to set C.
e) Find the truth set for prepositional function $p(x)$ defined on the set \mathbf{N} of positive integers. Where $\mathrm{p}(x)$ be " $\mathrm{x}+2>7$ ".
f) Define a 'contradiction' proposition.
g) Define and draw a multi graph.
h) Define and draw a directed graph.
i) Define a recurrence relation.
j) If $A=\left[\begin{array}{ll}4 & 0 \\ 3 & 6 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 7 \\ 2 & 6 \\ 3 & 4\end{array}\right]$ find the $3 A+5 B$

SECTION-B

2. Prove the Distributive Law: $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$.
3. Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$:
$\mathrm{R}=\{(1,1),(1,2),(1,3),(3,3)\} \mathrm{S}=\{(1,1)(1,2),(2,1)(2,2),(3,3)\}$
$\mathrm{T}=\{(1,1),(1,2),(2,2) .(2,3)\}$
Determine whether or not each of the above relations on A is: (a) reflexive; (b) symmetric; (c) transitive; (d) Antisymmetric.
4. Determine whether the proposition : $\mathrm{p} \mathrm{V} \neg(\mathrm{p} \Lambda \mathrm{q})$ is a tautology or not ?
5. Find the product matrix AB where $\mathrm{A}=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 2 & 1\end{array}\right]$
6. Define the following graphs by drawing suitable examples :
a) Eulerian Graph.
b) Hamiltonian graph.

SECTION-C

7. a) Determine whether the sequence $<3 \mathrm{n}>$ is solution of recurrence relation $a_{\mathrm{n}}=2 a_{\mathrm{n}-1}-a_{\mathrm{n}-2}$?
b) Consider the relation $\mathrm{R}=\{(1,3),(1,4),(3,2),(3,3),(3,4)\}$ on $\mathrm{A}=\{1,2,3,4\}$.
i) Find the matrix M of relation R.
ii) Find the domain and range of R.
iii)Find inverse of relation R.

Q8. a) Define a spanning tree. Find three spanning trees of the graph G shown below :

Graph (G)

> b) How many colors are required for coloring of above graph G.

Q9. Prove the following by the principle of mathematical induction:

$$
\begin{equation*}
1+3+5+8+\ldots+(2 n-1)=n^{2} \tag{10}
\end{equation*}
$$

