Roll No.
Total No. of Pages : 02
Total No. of Questions : 09
BMCI (2013 Batch) (Sem.-3)
MATHEMATICS - III (Computer Oriented)
Subject Code : BMCI-302
Paper ID : [G1182]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1 Answer briefly :
a) If $A=\left[\begin{array}{cc}-3 & -1 \\ 5 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right]$, Find AB
b) Define Rank of a Square matrix and find the rank of $\left[\begin{array}{cc}2 & -1 \\ 3 & 5\end{array}\right]$.
c) Define Arithmetic mean.
d) Define Standard deviation.
e) Differentiate $\sin x^{2}$ w.r.t to x.
f) Differentiate $x^{2}+2 x$ w.r. $t x$.
g) Integrate : $x \sin x$ by parts.
h) Solve : $\int_{0}^{\pi / 2} \sin ^{2} x d x$.
i) Define coefficient of variation.
j) Define Square matrix.

SECTION-B

Q2 Find the inverse of $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$.

Q3 Compute skewness and kurtosis, if the first four moments of the frequency distribution $f(x)$ about the value $x=4$ are respectively $1,4,10$ and 45 .

Q4 If $x^{3}+y^{3}=3 a x y$, find the second derivative w.r.t x .
Q5 Evaluate : $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x$.
Q6 Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.

SECTION-C

Q7 Use Trapezoidal rule with $n-8$ to estimate $\int_{1}^{5} \sqrt{1+x^{2}} d x$.
Q8 The following are scores of two batsmen A and B in a series of innings. Who is the better score getter and who is more consistent?

A	12	115	6	73	7	19	119	36	84	29
B	47	12	16	42	4	51	37	48	13	0

Q9 The sum of the perimeters of a circle and square is k, where k is some constant. Prove that the sum of their areas is least, when the side of the square is double the radius of the circle.

