

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (IT) (2013 & 2014) (Sem.-1) BASIC MATHEMATICS - I

Subject Code: BS-103 Paper ID: [B0402]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly:

- (a) Define empty set. Also give an example.
- (b) If $A = \{3, 5, 7, 9, 11\}$, $B = \{7, 9, 11, 13\}$, $C = \{11, 13, 15\}$, then find
 - (i) $A \cup B$ (ii) C–B.
- (c) Using Binomial theorem expand $\left(2x + \frac{1}{x^2}\right)^5$.
- (d) If $X + Y = \begin{bmatrix} -5 & 2 \\ -8 & 9 \end{bmatrix}$ and $X = Y = \begin{bmatrix} 7 & 3 \\ 9 & 6 \end{bmatrix}$, find matrices of X and Y.
- (e) If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find k so that $A^2 = kA 2I$.
- (f) How many terms are there in the expression of $\{(2x+3y)^2\}^8$?
- (g) Find the sum of all three digit numbers, which are divisible by 7.
- (h) What is the sum of the series: $-64, -66, -68, \dots, -100$.
- (i) Find the mean of the following distribution

Class	0-7	7-14	14-21	21-28	28-35	35-42	42 – 49
Frequency	19	25	36	72	51	43	28

(j) Find the value of sin 15°.

1 M- 12502 (S3)-392

SECTION-B

- (a) Prove that $\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$.
 - (b) If sec $x = \frac{13}{5}$, x lies in fourth quadrant, find the value of other five trigonometric functions.
- (a) Find the middle terms in the expression of $\left(3x \frac{x^3}{6}\right)^7$. 3.
 - (b) Find the coefficient of x^7 in $\left(3x + \frac{1}{2x}\right)^{11}$.
- 4. (a) Find x and y from the following equations:

$$2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}.$$

- (b) Prove that $\begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} = 3abc a^3 b^3 c^3$. (a) Find the minors and cofactors of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$. 5.
 - (b) Calculate the mean-, mode and median for the following :

Mid – Value	15	20	25	30	35	40	45	50	55
Frequency	2	22	19	14	3	4	6	1	1

- (a) Solve $1 + 6 + 11 + 16 + \dots + x = 148$. 6.
 - (b) Find the sum of $0.4 + 0.44 + 0.444 + 0.4444 + \dots$ to *n* terms.
- 7. (a) Write the types of sets with example.
 - (b) If $A = \{x : x \text{ is a natural number}\}$, $B = \{x : x \text{ is an even natural number}\}$, $C = \{x : x \text{ is } x \text{$ an odd natural number} and $D = \{x : x \text{ is a prime number}\}.$

Find (i) $A \cup B$ (ii) $C \cup B$ (iii) $A \cap B \cap D$.

2 | M- 12502 (S3)-392