

Roll No.							Total No. of Pages: 0)2
							i otal itol oi i agoo i	

Total No. of Questions: 09

B.Sc.(BT) (2013 to 2017) (Sem.-1) INORGANIC CHEMISTRY

Subject Code: BSBT-103 Paper ID: [F0202]

Max. Marks: 60 Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students 2. have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. **Answer briefly:**

- a) Give examples of Π -acid ligand complexes.
- b) What do you mean by Vander waal Forces?
- c) Is BH₃ electron deficient? Explain.
- d) Explain Octet Rule.
- e) What do you mean by Effective Nuclear Change?
- f) Differentiate between Atomic and Ionic Radius.
- g) Which noble gas is the easiest to liquefy and why?
- h) Which has more electron affinity F or CI and why?
- i) Write in the increasing order of ionic size: Na⁺, F⁻, Mg²⁺, O²⁻.
- i) What do you mean by hydration energy?

SECTION-B

- 2. Draw all the isomers for MA₂B₂, MA₂BC.
- 3. Draw the geometry and give details of hybridization of XeOF₄ and XeOF₂.
- 4. What is Hydrogen Bonding? Discuss its different types.
- Calculate CFSE and Magnetic Moment of the following: [CO(NH₃)₆]³⁺, [COF₆]³⁻ 5.
- 6. What do you mean by the term Back Bonding with respect to Metal Carbonyl Complexes?

SECTION-C

- 7. Discuss the trends along the periods and groups of the following:
 - a) Ionisation Energy
 - b) **Electron Affinity**
- Melting and Boiling Points

 Complete the following reactions:

 a) NaF + XeF₆ \rightarrow b) AsF₅ + $\stackrel{\checkmark}{}$ 8.

 - $AsF_5 + XeF_6 \rightarrow XeF_6 + YeF_6 \rightarrow XeF_6 + YeF_6 \rightarrow XeF_6 + YeF_6 \rightarrow XeF_6 \rightarrow XeF_$
 - c)
 - $Xe + PtF_6 \rightarrow$ d)
 - e) $XeOF_2 + NaOH \rightarrow$
- 9. Draw molecular orbital diagram of CO and compare its stability with CO⁺. Also discuss bonding orbitals of CO⁻, CO, CO⁺.

2 M-47022 (S2)-398