\square

B.Sc Non Medical (2018 Batch) (Sem.-1)
 SOLID GEOMETRY
 Subject Code: BSNM-106-18
 Paper ID : [75747]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. a) Find the equation of plane passing through the point $(2,2,4)$ and perpendicular to the planes $2 x-2 y-4 z-3=0$ and $3 x+y+6 z-4=0$.
b) What is the normal form of equation of plane?
c) Determine the value of k such that $x^{2}+y^{2}+z^{2}+2 x-4 y+6 z+k=0$
d) Find the equation of sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point (1,2,3).
e) Find the coordinates of points in which the line $\frac{x+2}{4}=\frac{y+9}{3}=\frac{z-8}{-5}$ meets the sphere $x^{2}+y^{2}+z^{2}=49$.
f) Find the equation of cone with vertex at origin and generators touching the sphere $x^{2}+y^{2}+z^{2}-2 x+4 z=1$
g) Show that the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ where $2 l^{2}+3 m^{2}-4 n^{2}=0$ is generator of the cone $2 x^{2}+3 y^{2}-4 z^{2}=0$.
h) Define Right circular cone
i) Find the equation to the right circular cylinder which passes through the circle $x^{2}+y^{2}+z^{2}=9, x-y+z=3$.
j) Define Radical plane.

SECTION-B

2. Find the bisectors of angle between the planes $2 x-y+2 z+3=0,3 x-2 y+6 z+8=0$. Also find out which plane bisects the acute angle.
3. Find the equation of sphere which touches the plane $3 x+2 y-z+2=0$ at the point $\mathrm{P}(1,-2,1)$ and also cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+4=0$.
4. Find the condition that the plane $l x+m y+n z=0$ may touch the cone $2 x^{2}-3 y^{2}+z^{2}=0$ and find the equation of reciprocal cone.
5. Show that the straight lines $x=2 y=8 z, x=y=2 z, 4 x=7 y=7 z$ lie on a circular cone of semi- vertical angle $\cos ^{-1} \frac{11}{\sqrt{126}}$.
6. Find the equation of right circular cylinder whose axis is $x=2 y=-z$ and radius 4 .

SECTION-C

7. The section of the cone whose vertex is P and guiding curve the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ by the Plane $x=0$ is rectangular Hyperbolla. Show that the locus of P is $\frac{x^{2}}{a^{2}}+\frac{y^{2}+z^{2}}{b^{2}}=1$,
8. Show that locus of points from which the tangents to three spheres $(x-2)^{2}+y^{2}+z^{2}=1$, $x^{2}+(y-3)^{2}+z^{2}=6,(x+2)^{2}+(y+1)^{2}+(z-2)^{2}=6$ are all equal is the line $\frac{x}{3}=\frac{y}{2}=\frac{z}{7}$. Find the coordinates of point of this line from length of tangents to three spheres is also equal to that of tangents of sphere $(2 x+1)^{2}+4 y^{2}+(2 z-1)^{2}=6$
9. Define enveloping cylinder. Find the equation of enveloping cylinders of sphere $x^{2}+y^{2}+z^{2}-2 x+4 z=1$ having its generator parallel to the line $x=y=z$.
