Roll No. \square

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and a student has to attempt any FOUR questions.

SECTION-A

Q1. Answer briefly :
a) Convert the hexadecimal number $(\mathrm{ABH})_{16}$ to binary and decimal numbers.
b) Convert gray code 101011 into its binary equivalent.
c) Realize AND and OR gates using only NAND gates
d) Perform the binary subtraction

110110-100010
e) Prove that $A+\bar{A} \cdot B=A+B$
f) Give the difference between SOP and POS forms.
g) What is programmable logic array? How it differs from ROM?
h) Give the comparison between synchronous \& Asynchronous sequential circuits.
i) Draw the logic diagram for SR latch using two NOR gates.
j) What is universal shift register?

SECTION-B

Q2. a) Simplify the following logic expressions using Boolean algebra.
$\mathrm{F}=\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}(\mathrm{B}+\mathrm{C})$
b) Minimize the given Boolean function using K-map.
$f(A, B, C, D)=\sum m(0,1,7,8,13,15)+\varphi(2,6,10,11)$.
Q3. a) Explain step by step the design of full adder using two half-adder and one OR gate.
b) Design a BCD counter using J-K flip-flop.

Q4. Draw the circuit of a typical semiconductor ROM, using BJT and explain its working.
Q5. Convert a clocked D flip-flop to a clocked J-K flip-flop by adding external gates.
Q6. a) Design a excess-3-to-BCD code converter using minimum number of NAND gates.
b) Write the minimized expression using K-map of the following expression :
$y=\pi \mathrm{M}(1,2,4,7,8)$
and realize the circuit using NAND gates.
Q7. Write short notes on any two :
a) $B C D$ subtractor
b) CAM
c) Code converter

