Roll No.

Total No. of Pages : 02
Total No. of Questions : 07

B.Sc.(IT) (2013 \& 2014) (Sem.-2)
 MATHEMATICS - II (DISCRETE)
 Subject Code : BS-104
 Paper ID : [B0406]

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write briefly :
a) Find number of relations from a set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ to $\mathrm{B}=\{1,2,3,4\}$.
b) Let $\mathrm{A}=\{1,3,4,6,8,9\}$ and R be a relation " x divides y " on A . Draw its Digraph.
c) Is inverse of a function $f(x)=2^{x}, x>0$ exist? Give specific answer.
d) State Principle of Mathematical Induction.
e) Prove that $\sum_{r=0}^{n}(-1)^{r} \mathrm{C}(n, r)=2^{n}$.
f) Find the generating function of the sequence $<0,0,2,2,2, \ldots\rangle$.
g) Show that $p \leftrightarrow q \equiv(p \vee q) \rightarrow(p \wedge q)$ using laws of algebra.
h) Determine all the Boolean sub-algebra of Boolean algebra D_{30}.
i) Check whether $\neg(p \rightarrow q) \vee(\neg p \vee(p \wedge q))$ is a tautology or contradiction.
j) Find the dual of Boolean equation $\left(a^{*} 1\right) *(0+a)=0$.

SECTION-B

2. Let R be a relation on $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) \mathrm{R}(c, d) \Leftrightarrow a d(b+c)=b c(a+d)$, where N denote the set of all natural numbers. Show that R is an equivalence relation on $\mathrm{N} \times \mathrm{N}$.
3. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ and f, g be both one-one and onto. Show that g of $: \mathrm{X} \rightarrow \mathrm{Z}$ is invertible and $(g o f)^{-1}=f^{-1} \circ g^{-1}$.
4. Show that $(11)^{n+2}+(12)^{2 n+1}$ is divisible by 133 by mathematical induction for any integer n.
5. Solve the recurrence relation $a_{r}-6 a_{r-1}+8 a_{r-2}=r .4^{r}, a_{0}=8$ and $a_{1}=22$.
6. a) State and prove Disjunctive syllogism.
b) Check the validity of the following argument: "If I try hard and I have a talent then I will become an engineer. If I became an engineer then I will be happy. Therefore, if I will not be happy then I did not try hard or I do not have talent".
7. a) State and prove De-Morgan's Laws in a Boolean Algebra.
b) Simplify the following Boolean function and realize the logic diagram of the reduced function with the help of NAND gate only
$F(A, B, C, D)=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+A \stackrel{\mathrm{~B}}{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{ABC} \overline{\mathrm{D}}+\mathrm{ABCD}$
