

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (Computer Science) (2013 & Onwards) (Sem.-2)
PARTIAL DIFFERENTIATION AND DIFFERENTIAL EQUATIONS

Subject Code: BCS-201 Paper ID: [A2605]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt ANY FOUR questions.

SECTION-A

1. Write briefly:

- (a) Write Bessel's differential equation.
- (b) What is the geometrical meaning of the equation $\frac{d^2y}{dx^2} = 0$.
- (c) Give an example of exact differential equation.

(d) If
$$f = \sin\left(\frac{x}{y}\right)$$
, then find $\frac{\partial^2 f}{\partial y^2}$.

- (e) What is the Particular Integral of $\frac{d^2y}{dx^2} 4y = \sin(2x)$?
- (f) If $f(x, y) = \frac{x^4 + y^4}{x^2 y^2}$, then what is the degree of f(x, y)?

(g) Solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$
.

- (h) Write a short note on limit of functions of several variables.
- (i) Show that the equation $(x^4 2xy^2 + y^4) dx (2x^2y 4xy^3 + \sin(y)) dy = 0$ is exact.
- (j) Write a short note on variation of parameters method.

SECTION-B

2. Solve
$$(y^4 + 2y) dx + (xy^3 + 2y^4 - 4x) dy = 0$$
.

3. Solve
$$\frac{d^2y}{dx^2} + 2y = x^2 e^{3x} + e^x \cos(2x)$$
.

4. If
$$u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin(u)\cos(2u)}{4\cos^3(u)}$.

- 5. Solve in series the differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0$.
- 6. Solve $z(x+y) p + z(x-y) q = x^2 + y^2$, where p & q have their usual meanings.
- 7. Prove that the system of confocal conic $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$, is self-orthogonal.

www.kirstRanker.com