www.FirstRanker.com

www.FirstRanker.com

						i 1	i I
						i 1	i I
						i 1	i I
ROILINO.							

Total No. of Pages : 1

Total No. of Questions : 06

M.Pharma(Pharmaceutical Chemistry) (2017 & Onwards) (Sem.-1) ADVANCED ORGANIC CHEMISTRY-I Subject Code : MPC-102T Paper ID : [74664]

Time : 3 Hrs.

Max. Marks: 75

INSTRUCTIONS TO CANDIDATES :

- 1. Attempt any FIVE questions out of SIX questions.
- 2. Each question carries FIFTEEN marks.

1.	a. Briefly describe the methods of formation of Carbene.	(5)
	b. Discuss the stereochemical evidences in support of SN2 reactions.	(5)
	c. Discuss stereochemical evidences in support of E2 mechanism.	(5)
2.	a. Explain the mechanism of Diekmann reaction.	(5)
	b. Describe the synthetic applications of Mannich reaction.	(5)
	c. Explain the mechanism of the carbon-carbon bond formation by Michael addition.	. (5)
3.	a. Discuss the role of aluminium isopropoxide in oppenauer oxidation and Med Ponndof- Verley reduction.	erwein (7.5)
	b. What is Witting reagent? Describe its important synthetic applications.	(7.5)
4.	a. Explain the mechanism of Pinner pyrimidine synthesis.	(5)
	b. Describe syntheses of Metronidazole and Chloroquine.	(10)
5.	a. Describe guidelines for good disconnection.	(4)
	b. Describe retrosynthetic analysis of 1,3-disfunctionalized compounds with sexamples.	uitable (7)
	c. Explain retrosynthesis based on 1, 2-disconnection.	(4)
6.	Write short notes on any two :	7.5×2)
	a. Protection of carboxylic group by hydrazide.	
	b. Applications of N-bromosuccinamide.	
	c. Mechanism of Traube purine synthesis.	