Roll No. \square Total No. of Pages : 02
Total No. of Questions: 08

M.Tech.(ECE) (Sem.-1)
 ELECTRONICS SYSTEM DESIGN
 Subject Code: EC-502
 Paper ID: [E0562]

Time : 3 Hrs.
Max. Marks : 100

INSTRUCTION TO CANDIDATES :

1. Attempt any FIVE questions out of EIGHT questions.
2. Each question carries TWENTY marks.
3. a. Design a combinational logic that accepts 4-bit binary input and provides 4-bit output (Y3, Y2, Y1, Y0). The output Y3, Y2, Y1, and Y0 becomes high when input number in decimal is square, even, odd, prime number respectively.
b. Design a 4-bit controlled 1's complement circuit. The circuit provides 1's complement of the input when control signal is high $(M=1)$ else the output is same as the input when control is low $(\mathrm{M}=0)$.
4. a. Design a JK flip-flop using D flip-flop.
b. What is hazard? Determine the possible hazard in the Boolean expression given by $\mathrm{Y}=\mathrm{AC}{ }^{\prime}+\mathrm{A}^{\prime} \mathrm{D}$.
5. a. Design an 8 -bit controlled 1-bit left shifter with the help of $2: 1$ multiplexors. The design should left shift the input when control is asserted.
b. Write down the different steps of state reductions. Illustrate the advantages of state reduction.
6. a. Design a synchronous 4-bit serial-in serial-out left/right shift register using D flip-flops with control (M).
b. Design a finite state machine (Mealy machine) that provides output ' 1 ' when 1010 sequence is detected. The overlapping is allowed while detecting the sequence.
7. a. Derive the Boolean expression of full-adder and full-subtractor. Implement these full-adder and full-subtractor using PLA.
b. Compare a digital circuit when implemented using ROM, PLA and PAL on the basis of implementation area, configurability and ease of implementation.
8. Design a 4-bit synchronous and asynchronous counter and compare them on the basis of performance, area and complexity.
9. a. Explain the need of tri-state buffers in the bus-oriented systems. With the help of neat diagram, explain different buses in the electronic systems.
b. Write short notes on electromagnetic interference and electromagnetic compatibility grounding and shielding of digital circuits.
10. a. What are prime timing issues we considered in the static timing analysis of sequential digital circuit? How these issues can be addressed?
b. How two systems can be synchronized? Write down steps of designing the controller for synchronization of two systems.
