

Roll No.					Total No. of Pages: 02
					i otal itol oi i agos i oi

Total No. of Questions: 08

M.Tech. (ME) (Sem.-1)

QUALITY ASSURANCE AND RELIABILITY

Subject Code: MME-509 Paper ID: [E0424]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWENTY marks.
- 3. Use of Statistical Tables is allowed.
- 1. a) Distinguish between 'Cost of Quality' and 'Value of Quality'. How will you optimize both? Show with the curve. (10)
 - b) Explain Quality of conformance and Quality of Design. (5)
 - c) Why is going above the UCL_x undesirable when working to a specification minimum? Is this not a great deal better than can be expected? (5)
- 2. a) Define Total Quality control and distinguish between Quality control and inspection in details. (10)
 - b) Distinguish between: (10)
 - i. Type I error and Type II error.
 - ii. Natural tolerance limits and Design tolerance limits.
 - iii. Manufacturer's risk and Purchaser's risk.
 - iv. TQM and ISO standardization.
- 3. a) Compare the applications and performance between control charts for defectives and control charts for defects. (10)
 - b) A textile mill development group determines that it must have a fiber which, among other properties has a minimum allowable tensile strength of 1.30 grams in 99% of the fiber used. Manufacturer 'X' offers to supply the textile mill with such a fiber and a contract is arranged. Manufacturer 'X' knows that the standard deviation of the process is 0.02.
 - i. What is lowest possible target tensile strength to ensure that exactly 99% of the fiber will have at least 1.30 gram minimum required strength?
 - ii. Compute 3σ control limits for \overline{X} and σ charts. (5+5)

1 M-38210 (S9)-1912

- 4. a) Explain the control chart patterns in process monitoring. (10)
 - b) Explain Normal and Binomial probability distributions along with their applications.

5. Daily inspection records are maintained on production of a special design electric device. 100 items have been inspected each day for the past 21 days. A total of 546 items failed during a particularly heat stress test. The four highest and lowest values of p are given below:

Highest	0.46	0.33	0.31	0.31
Lowest	0.18	0.18	0.20	0.21

- a) Compute 3σ trial control limits for a p-chart; if the process is in statistical control.
- b) Recommend an aimed at value p' & 3σ control limits for continued use of p-chart.
- c) The test results as described above are from a special severe heat stress chamber which is designed in such a way that 25% of the product will fail when, in fact, it is satisfactory for its intended use. If the minimum stress specification is 750 units & the process S.D. is known to be 12 units, what should be the lower limit of the test? Assume that this stress characteristic to be normally distributed.
- What is Quality Function Deployment and explain its implementation procedure using a 6. case study through QFD relationship matrix? (20)
- 7. a) Explain the concept of Six Sigma and write the advantages and limitations of Six Sigma. How is it different from TQM? (10)
 - b) Derive the following relations:

i.
$$R(t) = e^{-T/\theta}$$

ii.
$$R(t) = e^{-\int h(t)dt}$$

ii. $R(t) = e^{-T|\theta|}$ where $R(t) = e^{-\int h(t)dt}$ where : R(t)= Reliability, θ = Mean life, T = required life of a product and h(t)= Hazard (5+5)

- Write the short notes on the following: (5×4) 8.
 - a) Series and parallel reliability systems.
 - b) ISO 9004 QA standardization.
 - c) Chain sampling plan.
 - d) Quality Assurance.

2 | M-38210 (S9)-1912