

www.FirstRanker.com

www.FirstRanker.com

Total No. of Pages : 02

Total No. of Questions : 8

M.Tech. (EE) (2018 Batch) (Sem.-1) POWER SYSTEM ANALYSIS Subject Code : MTEE-101-18 Paper ID : [75215]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWELVE marks.
- 1. The following is the system data for a load flow solution. Determine the voltages at the end of first iteration using Gauss-Seidel method. Take $\alpha = 1.6$.

The line admittances:

Bus code	Admittance		
1-2	2-j8		
1-3	1-j4		
2-3	0.666-j2.664		
2-4	1-j4		
3-4	2-j8		
C'			

The schedule of active and reactive powers :

Bus code	P (p.u.)	Q (P.u.)	V(p.u.)	Remarks
1	-	-	1.06	Slack
2	0.5	0.2	1+j0	PQ
3	0.4	0.3	1+j0	PQ
4	0.3	0.1	1+j0	PQ

- 2. Discuss the contingency analysis procedure using flow-chart to enhance the power system security.
- 3. Derive Swing equation used for stability studies in power system.
- 4. Describe the methods of improving transient stability.

FirstRanker.com

- 5. The short circuit MVA at the bus bars for a power plant A is 1000 MVA and for another plant B is 800 MVA at 33 kV. If these two are to be interconnected by a tie- line with reactance 1.1 ohm. Determine the possible short circuit MVA at both the plants.
- 6. Write the notes on following related to the state estimations in power system.
 - a. Observability
 - b. WSL method
- 7. Explain the concept of voltage stability with the help of a simple radial power system. How the critical voltage is important in P-V characteristics of the power system?
- 8. Explain sparsity technique and its application in power flow studies.

www.FirstRanker.com