www.FirstRanker.com

www.FirstRanker.com

Roll No.						Total No. of Pages: 0
						101411101011490010

Total No. of Questions: 8

M.Tech.(EE) (2018 Batch) (Sem.-1)
POWER SYSTEM DYNAMICS-I

Subject Code: MTEE-102-18 Paper ID: [75216]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWELVE marks.
- Ql. Draw the model of a synchronous machine showing various current and voltage variables involved in a seventh order model of synchronous machine. Write down various stator and rotor equations in this model.
- Q2. What is Park's transformation? What are Park's transformation matrices in power variance and power invariance forms? Apply Park's transformation to a system of three phase voltages v_a , v_b , and v_c to obtain v_d , v_a and v_o .
- Q3. Draw the model of a SMIB system in state variable form (consider classical model only). How its small signal stability is calculated using Eigen value analysis?
- Q4. What is the purpose of an excitation system and what are various types of excitation systems used in a synchronous machine? Explain representation of IEEE Type AC1A excitation system.
- Q5. Draw Philips Heffron model of synchronous machine explaining K1 to K6 constants.
- Q6. What is the need of power system stabilizer in power systems? Explain the design procedure of power system stabilizer.
- Q7. Explain induction motor modelling for stability studies.
- Q8. Explain the difference between basic parameters and operational parameters of a synchronous machine. How estimation of synchronous machine parameters through operational impedance is performed?

1 M-75216 (S35)-2304