Roll No. \square

Time : 3 Hrs.
Max. Marks : 100

INSTRUCTION TO CANDIDATES :

1. Attempt any FIVE questions out of EIGHT questions.
2. Each question carries TWENTY marks.
1) What are the various phases of a compiler? Explain with example.
2) a. What is the difference between phase and pass? Give example of a language which uses more than one pass for compiling a program.
b. What is boot strapping? Explain the use of boot strapping in compiler design.
3) a. Explain a translation scheme to translate assignment statement with mixed type.
b. A list structure can be defined as follows :
i) \wedge is a (null) list structure.
ii) A (an atom) is a list structure
iii) If $11,12, \ldots \ldots .1 \mathrm{k}$ are list structures, $\mathrm{k} \geq 1$, then.
$(11,12 \ldots \ldots . .1 \mathrm{k})$ is a list structure
a) Construct a grammar for list structure.
b) Draw a parse tree for $\left(\left((\mathrm{A}, \mathrm{A}),{ }^{\wedge},(\mathrm{A})\right), \mathrm{A}\right)$ in the grammar.
4) a. Suppose $A[-4: 5,-3: 3]$ is a 10×7 integer array whose first script ranges from -4 to +5 , and whose second ranges from -3 to 3 . Write code to assign $A[I, J]:=0$, assuming A is stored in row major form beginning at location 1000 in a byte addressed machine with six byte per word.
b. Let + , $^{*} \wedge$ stand for addition, multiplication and exponential but with non Standard precedences and associativities. Evaluate $1+1^{*} 2^{\wedge} 1^{*} 1^{\wedge} 2^{\wedge} 2$ on the assumption that the order of precedence is + (highest), ${ }^{*}$, and ${ }^{\wedge}$ with all operators left associative.
5) a. What is a control flow representation for Boolean expression? Explain with example.
b. Write quadruples, triples, and indirect triples for the expression

$$
-((\mathrm{A} / \mathrm{B})+\mathrm{B}) *(\mathrm{C}+(\mathrm{D} * \mathrm{E}))-(\mathrm{A}+\mathrm{B}+\mathrm{C})
$$

6) a. What is a lookahead operator? How this feature is used in lexical analyzers?
b. Give a DFA for the set of all strings beginning with 1 which, interpreted as the binary representation of an integer, is congruent to 5 .
7) What is recursive descent parsing? Why left factoring is essential in the case of recursive descent parsing? Left factor the following grammar.
$S \rightarrow i c t s|i c t s e s| a$
$\mathrm{C} \rightarrow \mathrm{b}$
8) Explain the following :
a. Loop optimization
b. Flow graph
