

Roll No. Total No. of Pages: 02

Total No. of Questions: 08

M.Tech.(ME) (Sem.-2)

RESEARCH METHODOLOGY

Subject Code: MME-502 Paper ID: [E0402]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWENTY marks.
- Q1. a. A biomedical device for medical emergencies can operate for 0, 1 or 2 times a night. Construct a tree diagram to show that there are 10 different ways that it can be operated for a total of 6 times over 4 nights.
 - b. Use the Poisson distribution to approximate the binomial probability b (3; 100,0.03).
- Q2. a. Specifications for a certain job call for washers with an inside diameter of 0.300 ± 0.005 inch. If the inside diameter of the washers supplied by a given manufacturer may be looked upon as a random variable having the normal distribution with $\mu = 0.302$ inch and σ =0.003 inch, what percentage of these washers will meet specifications?
 - b. What is the significance of ANOVA?
- Q3. The time to repair an electronic instrument is a normally distributed random variable measured in hours. The repair times for 16 such instruments chosen at random are as follows:

		Hours			
WAL	159	280	101	212	
72	224	379	179	264	
	222	362	168	250	
	149	260	485	170	

- a. You wish to know if the mean repair time exceeds 225 hours set up appropriate hypothesis for investigating this issue
- b. Test the hypothesis you formulated in part (a). What are your conclusions? Use $\alpha = 0.05$
- c. Construct a 95 percent confidence interval on mean repair time.

1 M-38203 (S9)-933

Q4. Engineers fabricated a new transmission type electron multiplier created an array of silicon Nano pillars on a flat silicon membrane. The precise structure can influence the electrical properties so, subsequently, the height and width of 50 Nano pillars were measured in nano-meters (nm) or 10^{-9} meters. The summary statistic, with x=width and y = height are:

$$n = 50, \ \overline{x} = 88.34, \ \overline{y} = 305.58, \ S_{xx} = 7239.22, \ S_{xy} = 17840.1, \ S_{yy} = 66975.2$$

- a. Find the least square line for predicting height for width.
- b. Find least square line for predicting width from eight.
- Q5. The following data pertain to the resistance (ohm) and the failure time (minutes) of certain overloaded resistors:

Resistance	Failure time	Resistance	Failure time
43	32	3	3
29	20	39	33
44	45	36	21
33	35	47	44
47	46	28	26
34	28	40	45
31	26	42	39
48	37	33	25
34	33	46	36
33	22	28	25
46	47	48	45
37	30	45	36

Calculate 'r'.

- Q6. a. Discuss the application of experimental design in finance function of a company.
 - b. Explain the theory of testing of hypothesis using 'F' test.
- Q7. Explain the model and components of the randomized complete block design with example.
- Q8. a. Describe the characteristics and logical formal for writing a research thesis and research papers.
 - b. What is student't'- test and explain its importance?

2 | M-38203 (S9)-933