Roll No.							Total No. of Pages : 0
							<u> </u>

Total No. of Questions: 08

M.Tech.(VLSI D) EL-I (2016 & Onwards) (Sem.-2) SEMICONDUCTOR DEVICES

Subject Code: MTVL-206 Paper ID: [74262]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTION TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carries TWENTY marks.
- 1. What is the basic principle of carrier injection? Derive the expressions for electron and hole currents injected at the junction in a semiconductor diode and hence define the diode equation.
- 2. a) In a uniformly doped silicon sample, the hole component of current is hundred times the electron component in an applied electric field. Assuming $\mu_n = 3$ μ_p , calculate the equilibrium electron and hole concentrations, the net doping, and the sample resistivity at 300K.
 - b) Resistivity of a sample of silicon at a given temperature is $25 \times 10^4 \,\Omega$ -cm. It is now doped at the extent of 4×10^{10} donor atoms / cm³ and 10^{10} acceptor atoms/ cm³. If an electric field of 4 V/cm is applied across the sample, find the total conduction current density.
- 3. a) An abrupt p-n junction in silicon is doped with $N_D=10^{15}$ cm⁻³ in the n-region and $N_A=4\times10^{20}$ cm⁻³ in the p-region. At room temperature, calculate :
 - i) The built-in potential.
 - ii) The depletion layer width and the maximum field at zero bias.
 - iii) The depletion layer width and the maximum field at a reverse bias of 5V.
 - b) Explain different regions of operation of BJT with suitable diagram. Explain the factors that are responsible for shape of output or collector characteristics of BJT.
- 4. Explain the Ebers-moll model and its characteristics in detail. Also discuss non-ideal effects in BJTs.

1 M-74262 (S27)-1838

- 5. a) Draw and explain the energy band diagram for the ideal MOS structure at equilibrium.
 - b) For an n-channel MOSFET with a gate oxide thickness of 11nm, $V_T = 0.6 \text{ V}$, $Z = 30 \text{ }\mu\text{m}$, and $L = 1 \text{ }\mu\text{m}$. Calculate the drain current at $V_G = 5 \text{ V}$ and $V_D = 0.1 \text{ V}$. Repeat for $V_G = 3 \text{ V}$ and $V_D = 5 \text{ V}$. Discuss what happens for $V_D = 7.5 \text{ V}$. Assume an electron channel mobility of $\mu_n = 200 \text{ cm}^2/\text{Vs}$.
- 6. Explain short channel, narrow width and substrate bias effects in MOSFETs with the help of suitable diagrams.
- 7. Explain drain induced barrier lowering (D1BL) and gate-induced drain leakage (GIDL) in MOSFETs with the help of suitable diagrams.
- 8. Short notes on the following (**Any two**):
 - a) Shockley Read Hall theory of recombination.
 - b) Avalanche process.
 - c) Gummel poon model.

MMM.FirstRanker.com

2 M-74262 (S27)-1838