

Roll No. Total No. of Pages: 02

Total No. of Questions: 08

M.Tech Structural Design EL-III (2016 & Onwards) (Sem.-3)

ADVANCED REINFORCED CONCRETE DESIGN

Subject Code: MTSD-303 Paper ID: [74807]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt any FIVE questions out of EIGHT questions.
- 2. Each question carry TWENTY marks.
- Q1. a) Write the assumptions in limit state of collapse in flexure.

[8]

- b) Find the M.R. of a singly reinforced concrete beam of 200 mm width and 400 mm effective depth, reinforced with 3 bars of 16 mm dia. of Fe 415 steel. Take M 20 concrete. Determine the actual stresses when the section is subjected to the limiting moment of resistance. [12]
- Q2. A cantilever beam 3m long carries a UDSL' of 16kN/m out of which 50% load is due to permanent loads. The beam, rectangular in section of width 350mm and total depth 600mm, is reinforced with 3 nos of 23 mm bars on tension side. Compute the short term deflection. [20]
- Q3. A reinforced concrete deep girder is continuous over spans of 9 m apart from center to center it is 4.5 m deep, 300 mm thick, and the supports columns 900 mm in width. If girder supports a uniformly distributed load of 200 kN/m including its own weight, design the necessary steel assuming M 20 concrete and Fe 415 steel. [20]
- Q4. Design a shear wall of length 6 m and thickness 275 mm subjected to the following forces (fig.l). Assume moderate exposure condition. Assume fc k = 30 Mpa and k = 415 N.mm² and the wall is a high wall with the following loadings: Sketch the reinforcement details. [20]

Loading	Axial Force (KN)	Moment (KNm)	Shear (KN)
Dead load + Live load	2050	650	40
Seismic load	300	5200	650

Fig. -1 shear wall

1 M-74807 (S9)-898

www.FirstRanker.com

www.FirstRanker.com

Q5.	Explain ductile detailing of RCC structures.	[20]
Q6.	Determine the curvature ductility of RC beam reinforced with 3-20mm dia bars on tension only. The width and depth of beam is 300mm and 600mm, respectively. Use M20 grade con and Fe415 steel.	
Q7.	Explain in detail about earthquake forces.	[20]
Q8.	a) What are the types of shear failure in beam?	[10]
	b) Define ductility of RCC structure. How it can be increased?	[10]

MMM.F.irsiRankei.com

2 | M-74807 (S9)-898