

Roll No. Total No. of Pages : 2

Total No. of Questions: 07

M.Sc. Mathematics (2017 Batch) (Sem.-1)

ALGEBRA-I

Subject Code: MSM-101 Paper ID: [74720]

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly:

- a) Write all abelian groups of order 108.
- b) State Sylow's second theorem.
- c) Let R be a ring and $a \in R$. Prove that $I = \{x \in R/ax = 0\}$ is a right ideal of R.
- d) Prove that any p-Sylow subgroup of a group G of order 33 is a normal subgroup of G.
- e) Show that elements in the same class of a group must have the same order.
- f) Write the composition series for a cyclic group of order 50.
- g) Write the composition series for the group A₄
- h) Prove that group of order 55 is not simple.

SECTION-B

- 2 a) Prove that A_n , n>4, is the only nontrivial normal subgroup of S_n .
 - b) Let G be a group of order 2m where m is odd. Prove that G contains a normal subgroup of order m.

1 M-74720 (S30)-785

- a) Prove that if an abelian group has a composition series, then G is a finite group.
 - b) State and prove Cayley's theorem.
- 4 a) Prove that any two finite sub normal series for a group G have isomorphic refinements.
 - b) Write the composition series for the symmetric group S₄.

SECTION-C

- 5 a) Prove that a divison ring is a simple ring.
 - b) Let G be a finite group such that x^2 = e for all x ε G. Prove that G is the direct product of a finite number of cyclic groups of order 2.
- 6 a) State and prove sylow's third theorem.
 - b) Prove that there are only two non-abelian groups of order 8.
- 7 a) Prove that in an integral domain every prime element is an irreducible element. The converse may not be true.
 - b) Let R be a Boolean ring. Then each prime ideal $P \neq R$ is maximal.

2 | M-74720 (S30)-785