

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages : 2
Total No. of Questions:07	
M.Sc. (Mathematics) (2017 Batcl REAL ANALYSIS – Subject Code : MSM-1 Paper ID : [74721]	h) (Sem.–1) - I 02
Time:3 Hrs.	Max. Marks:80

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- 2. SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

- 1. a) Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Find the values of m and n.
 - b) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$.
 - c) State Dirichlet's test for uniform convergence.
 - d) Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{2^n}{n^2} x^n$.
 - e) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b] then prove that $fg \in R(\alpha)$.
 - f) Prove that $\sum a_n n^{-x}$ is uniformly convergent on [0, 1} if $\sum a_n$ converges uniformly in [0,1].
 - g) Define a closed curve and rectifiable curve.
 - h) Show that the sequence $\{fn\}$, where $f_n(x) = nx e^{-nx^2}$, $x \ge 0$ is not uniformly convergent on [0, k], $k \ge 0$.

www.FirstRanker.com

SECTION-B

- 2. a) State and prove Dirichlet's theorem on power series.
 - b) State and prove Heine-Borel theorem.
- 3. a) Prove that the continuous image of a compact set is compact.
 - b) State and prove Cauchy's General Principle of uniform convergence.
- 4. a) Prove that each closed and bounded set in \mathbb{R}^n is compact.
 - b) Prove that the set of real numbers in [0, 1] is uncountable.

SECTION-C

- 5. a) If f is continuous on [0, 1] and if $\int_0^1 f(x)x^n dx = 0$, n = 1, 2, 3,... Prove that f(x) = 0 on [0, 1].
 - b) Show that the sequence $\{f_n\}$ where $f_n : R \to R$ defined by $f_n(x) = x/n \forall x \in R, n \in N$ is convergent point wise but not uniformly.
- 6. a) Let α be monotonically increasing function on [a, b] and $f_n \in R(\alpha)$ on [a, b], for n = 1, 2, 3,..., such that $f_n \to f$ uniformly on [a, b]. Then $f \in R(\alpha)$ on [a, b] and $\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$.
 - b) Prove that $\sum_{n=1}^{\infty} a_n \sin nx$ and $\sum_{n=1}^{\infty} a_n \cos nx$ are uniformly convergent on R if $\sum_{n=1}^{\infty} |a_n|$ converges.
- 7. State and prove Stone Weierstrass theorem.