Roll No. $\square$
Total No. of Questions : 07

```
M.Sc. (Mathematics) (2017 Batch) (Sem.-1)
REAL ANALYSIS - I
Subject Code: MSM-102
Paper ID : [74721]
```

Time : 3 Hrs.
Max. Marks : 80

## INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions in each section carrying SIXTEEN marks each.
3. Select atleast TWO questions from SECTION - B \& C EACH.

## SECTION-A

1. a) Two finite sets have $m$ and $n$ elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Find the values of $m$ and $n$.
b) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$.
c) State Dirichlet's test for uniform convergence.
d) Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2}} \mathrm{x}^{n}$.
e) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on $[a, b]$ then prove that $f g \in R(\alpha)$.
f) Prove that $\sum a_{n} n^{-x}$ is uniformly convergent on $[0,1\}$ if $\sum a_{n}$ converges uniformly in [0,1].
g) Define a closed curve and rectifiable curve.
h) Show that the sequence $\{f n\}$, where $f_{n}(x)=n x e^{-n x^{2}}, x \geq 0$ is not uniformly convergent on [ $0, \mathrm{k}$ ], $\mathrm{k}>0$.

## SECTION-B

2. a) State and prove Dirichlet's theorem on power series.
b) State and prove Heine-Borel theorem.
3. a) Prove that the continuous image of a compact set is compact.
b) State and prove Cauchy's General Principle of uniform convergence.
4. a) Prove that each closed and bounded set in $R^{n}$ is compact.
b) Prove that the set of real numbers in $[0,1]$ is uncountable.

## SECTION-C

5. a) If f is continuous on $[0,1]$ and if $\int_{0}^{1} f(x) x^{\mathrm{n}} d x=0, \mathrm{n}=1,2,3, \ldots$ Prove that $\mathrm{f}(\mathrm{x})=0$ on [0, $1]$.
b) Show that the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ where $\mathrm{f}_{\mathrm{n}}: R \rightarrow R$ defined by $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x} / \mathrm{n} \forall \mathrm{x} \in \mathrm{R}, \mathrm{n} \in \mathrm{N}$ is convergent point wise but not uniformly.
6. a) Let $\alpha$ be monotonically increasing function on $[a, b]$ and $f_{n}, \in R(\alpha)$ on $[a, b]$, for $n=1$, $2,3, \ldots$, such that $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then $f \in R(\alpha)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$.
b) Prove that $\sum_{n=1}^{\infty} a_{n} \sin n x$ and $\sum_{n=1}^{\infty} a_{n} \cos n x$ are uniformly convergent on R if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
7. State and prove Stone Weierstrass theorem.
