Roll No. \square Total No. of Pages: 02
Total No. of Questions: 11

M.Sc.(Physics) (2018 Batch) (Sem.-1) COMPUTATIONAL PHYSICS
 Subject Code: MSPH-415-18
 Paper ID : [75126]

Time : 3 Hrs.
Max. Marks : 70

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SEVEN questions carrying FIVE marks each and students have to attempt any SIX questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Answer briefly :
(a) What is the need of high level language in Physics?
(b) Distinguish between CPU and ALU.
(c) Explain automatic storage class specifier in $\mathrm{C}++$.
(d) Explain void function.
(e) What is a string in $\mathrm{C}++$?
(f) What are memory devices?
(g) Explain the syntax of go to control statement.
(h) What are random numbers?
(i) Discuss two areas of applications of simulation techniques.
(j) Find $y(0.1)$ using Euler's method from $\frac{d y}{d x}=x+y, y(0)=0$.

SECTION-B

2. Differentiate between structure and array.
3. Explain different data types of $\mathrm{C}++$ language by giving suitable examples.
4. Explain the syntax of following control statements in C++ language with suitable example:
if; nested if-else; switch.
5. Discuss the importance of preprocessor in $\mathrm{C}++$ language.
6. Evaluate $f^{\prime}(3)$ from $\begin{array}{ccccccc}x & 0 & 1 & 2 & 4 & 5 & 6 \\ f(x) & 1 & 14 & 15 & 5 & 6 & 19\end{array}$
7. Using RK method, find y (0.1), given that $\frac{d y}{d x}=\frac{y-x}{y+x}$ and $y(0)=1$.
8. Explain Monte Carlo simulation technique.

SECTION-C

9. (a) Explain the necessity of loops in C++ language. Give the syntax of while, for, do loops.
(b) Write a program to find sum of digits in a given number.
10. (a) What is an array? Explain the declaration and initialization of one dimensional arrays with example.
(b) Write a program to calculate the area and volume of a sphere.
11. (a) Using Milne's method, find $y(0.3)$, from the equation $y^{\prime}=x^{2}+y^{2}-2$, using the following data : $(-0.1,1.0900),(0,1.0000),(0.1,0.8900)$ and $(0.2,0.7605)$.
(b) Evaluate $\mathrm{I}=\int_{0}^{1} \frac{1}{1+x} d x$ using Weddle's rule.
