

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages : 2
Total No. of Questions:7	
M.Sc. (Mathematics) (2018 Batch) (Sem.–1)
REAL AI	NALYSIS-I
Subject Code	e:MSM-102-18
Paper ID	D : [75130]
Timo : 3 Hrs	Max Marks · 7

TIME : 3 Hrs.

Max. Marks: 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- SECTION B & C. have THREE questions each. 2.
- Attempt any FOUR questions from SECTION B & C carrying FIFTEEN marks 3. each.
- 4. Select atleast TWO guestions from SECTION - B & C each.

SECTION-A

- 1. a) Show that set of rational numbers are countable.
 - b) Show that if the series $\sum_{n=1}^{\infty} a_n$ is divergent, then the series $\sum_{n=1}^{\infty} |a_n|$ also diverges.
 - c) Let f be monotonic on (a, b). Then show that the set of points of (a, b) at which f is discontinuous is atmost countable.
 - d) Construct sequences $\{f_n\}$ and $\{g_n\}$ of functions which converge uniformly on some set E, but $\{f_n g_n\}$ does not converge uniformly on E.
 - e) Give an example of a bounded real function f on [a, b] which is not Riemann integrable but f^2 is Riemann integrable. $[2 \times 5 = 10]$ 2

SECTION-B

2. a) Prove that every subset of a compact metric space is closed if and only if it is compact.

[8]

b) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of non-negative terms, then what can be said about the convergence/ divergence of the series $\sum_{n=1}^{\infty} \frac{a_n}{1+na_n}$. Justify your answer. [7]

1 M-75130

(S37)-1100

www.FirstRanker.com

www.FirstRanker.com

FirstRanker.com

- 3. a) Let f be a continuous mapping of a metric space X into a metric space Y and let E be a connected subset of X, then prove that f(E) is also connected. [7]
 - b) Prove that a mapping f of a metric space X into a metric space Y is continuous if and only if inverse image of every open set is open. [8]
- 4. a) Prove that the cauchy sequences of two absolute convergent series converges absolutely. [7]
 - b) For $x, y \in \mathbb{R}$ define, $d(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$. Show that *d* is metric on *X*. Also, find all open and closed subsets of this metric space. [8]

SECTION-C

- 5. a) Let $f \in \mathfrak{R}$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Then show that $h \in \mathfrak{R}$ (α). [7]
 - b) Let *f* be Riemann integrable on [*a*, *b*], define $F(x) = \int_{a}^{x} f(t)dt$. Then show that *F* is continuous on [*a*, *b*]. Also, if *f* is continuous at a point x_0 , of [*a*, *b*], then prove that *F* is differentiable at x_0 and $F'(x_0) = f(x_0)$. [8]
- 6. a) Prove that there exists a real continuous function on the real line which is nowhere differential. [7]
 - b) If f maps [a, b] into \mathbb{R}^k and if $f \in \mathfrak{R}$ (α) for some monotonically increasing function α on [a, b], then prove that $|f| \in \mathfrak{R}$ (α). [8]
- 7. a) If $\{f_n\}$ is a pointwise bounded sequence of complex functions on countable set E, then prove that $\{f_n\}$ has subsequence $\{f_{nk}\}$ converges for every $x \in E$. [7]
 - b) State and prove Stone Weierstrass Theorem. [8]