Roll No. \square
Total No. of Questions: 7
M.Sc. (Mathematics) (2018 Batch) (Sem.-1)

REAL ANALYSIS-I
Subject Code : MSM-102-18
Paper ID : [75130]

Time : 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions each.
3. Attempt any FOUR questions from SECTION B \& C carrying FIFTEEN marks each.
4. Select atleast TWO questions from SECTION - B \& C each.

SECTION-A

1. a) Show that set of rational numbers are countable.
b) Show that if the series $\sum_{n=1}^{\infty} a_{n}$ is divergent, then the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ also diverges.
c) Let f be monotonic on (a, b). Then show that the set of points of (a, b) at which f is discontinuous is atmost countable.
d) Construct sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ of functions which converge uniformly on some set E, but $\left\{f_{n} g_{n}\right\}$ does not converge uniformly on E.
e) Give an example of a bounded real function f on $[a, b]$ which is not Riemann integrable but f^{2} is Riemann integrable.
[$2 \times 5=10$]

SECTION-B

2. a) Prove that every subset of a compact metric space is closed if and only if it is compact.
b) Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of non-negative terms, then what can be said about the convergence/ divergence of the series $\sum_{n=1}^{\infty} \frac{a_{n}}{1+n a_{n}}$. Justify your answer.
3. a) Let f be a continuous mapping of a metric space X into a metric space Y and let E be a connected subset of X, then prove that $f(E)$ is also connected.
b) Prove that a mapping f of a metric space X into a metric space Y is continuous if and only if inverse image of every open set is open.
4. a) Prove that the cauchy sequences of two absolute convergent series converges absolutely.
b) For $x, y \in \mathbb{R}$ define, $d(x, y)=\left\{\begin{array}{ll}1 & x \neq y \\ 0 & x=y\end{array}\right\}$. Show that d is metric on X. Also, find all open and closed subsets of this metric space.

SECTION-C

5. a) Let $f \in \mathfrak{R}$ on $[a, b], \mathrm{m} \leq f \leq M, \phi$ is continuous on $[m, M]$ and $h(x)=\phi(f(x))$ on $[a, b]$. Then show that $h \in \mathfrak{R}(\alpha)$.
b) Let f be Riemann integrable on $[a, b]$, define $F(x)=\int_{a}^{x} f(t) d t$. Then show that F is continuous on $[a, b]$. Also, if f is continuous at a point x_{0}, of $[a, b]$, then prove that F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
6. a) Prove that there exists a real continuous function on the real line which is nowhere differential.
b) If f maps $[a, b]$ into \mathbb{R}^{k} and if $\mathrm{f} \in \mathfrak{R}(\alpha)$ for some monotonically increasing function α on $[a, b]$, then prove that $|f| \in \mathfrak{R}(\alpha)$.
7. a) If $\left\{f_{n}\right\}$ is a pointwise bounded sequence of complex functions on countable set E , then prove that $\left\{f_{n}\right\}$ has subsequence $\left\{f_{n k}\right\}$ converges for every $x \in E$.
b) State and prove Stone Weierstrass Theorem.
