Roll No. \square
Total No. of Questions: 07

M.Sc Mathematics (2018 Batch) (Sem.-1)
 ORDINARY DIFFERENTIAL EQUATIONS AND SPECIAL FUNCTIONS
 Subject Code: MSM-104-18
 Paper ID : [75132]

Time: 3 Hrs.
Max. Marks : 70

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions each.
3. Attempt any FOUR questions from SECTION B \& C carrying FIFTEEN marks each.
4. Select atleast TWO questions from SECTION - B \& C each.

SECTION-A

1. Answer briefly :
a. Convert the differential equation $y^{\prime \prime}(t)=3 y^{\prime}(t)+8 y(t)-5 y^{2}(t)$ in to a system of first order differential equations.
b. Convert the following Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0$ in to standard Sturm-Liouville form.
c. Find a minimum value for the radius of convergence of a power series solution of

$$
(x+1) y^{\prime \prime}-3 x y^{\prime}+2 y=0
$$

about $x_{0}=1$.
d. Express $f(x)=x^{4}+2 x^{3}-6 x^{2}+5 x-3$ in terms of Legendre polynomials.
e. State Picard's Existence Theorem for a system of differential equations in n unknowns.

SECTION-B

2. (a) Consider the linear system $\frac{d x}{d t}=A x(t)$, with $A=\left[\begin{array}{rr}-6 & -2 \\ 3 & 1\end{array}\right]$.

Find the general solution and hence find the solution with initial condition $x(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. What is $\lim _{t \rightarrow \infty} x(t)$ in this case?
(b) Consider the third-order differential equation :

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}=x^{2}+y \frac{d y}{d x}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2} \tag{7}
\end{equation*}
$$

Does there exist a unique solution ϕ of the given equation such that

$$
\phi(0)=1, \phi^{\prime}(0)=-3, \phi^{\prime \prime}(0)=0 ?
$$

Explain precisely why or why not.
3. (a) Use the operator method to find the general solution of the following linear system :

$$
\begin{gather*}
\frac{d x}{d t}+\frac{d y}{d t}-x=-2 t \tag{8}\\
\frac{d x}{d t}+\frac{d y}{d t}-3 x y=t^{2} . \tag{7}
\end{gather*}
$$

(b) Determine the nature of the criticar point $(0,0)$ of the system :

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-7 y \\
& \frac{d y}{d t}=3 x-8 y
\end{aligned}
$$

and determine whether or not the point is stable.
4. (a) Prove that the eigen values of the following regular Sturm-Liouville problem

$$
-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=\lambda r(x) y, \alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0, \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0
$$

are real.
(b) Find eigen values and eigen functions for the Sturm-Liouville problem

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, y^{\prime}(l)=0, \tag{8}
\end{equation*}
$$

where $l>0$ is a constant and λ is a parameter.

SECTION-C

5. (a) Find at least the first four nonzero terms in a power series expansion of the solution to the given initial value problem.

$$
\begin{equation*}
y^{\prime \prime}-(\sin x) y=0, y(\pi)=1, y^{\prime}(\pi)=0 . \tag{8}
\end{equation*}
$$

(b) Use the method of Frobenius to find the solution near $x=0$ of the following differential equation :

$$
\begin{equation*}
2 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+2 y=0 . \tag{7}
\end{equation*}
$$

6. (a) The Chebyshev differential equation is:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0 \tag{8}
\end{equation*}
$$

Where α is a constant. Determine two solutions in powers of x for $|x|<1$. Also show that if α is a nonnegative integer n, then there is a polynomial solution of degree n.
(b) Show that the Bessel's function of the first kind of order zero. $\mathrm{J}_{0}(k x)$. Where k is a constant, satisfies the differential equation :

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+k^{2} x y=0 . \tag{7}
\end{equation*}
$$

7. Consider the following Hermite equation :

$$
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0,-\infty<x<\infty,
$$

Where λ is a constant.
(a) Find the first four terms in each of two solutions about $x=0$.
(b) Show that if λ is a nonnegative even integer, then one or the other of the series solutions terminates and becomes a polynomial. Find the polynomial solutions for $\lambda=0,2,4$ and 6.
(c) The Hermite polynomial $H_{n}(x)$ is defined as the polynomial solution of the Hermite equation with $\lambda=2 n$ for which the coefficient of x_{n} is $2 n$. Find $H_{0}(x), H_{1}(x), H_{2}(x)$, and $H_{3}(x)$.

